MC10EL11, MC100EL11

5V ECL 1:2 Differential Fanout Buffer

The MC10EL/100EL11 is a differential 1:2 fanout buffer. The device is functionally similar to the E111 device but with higher performance capabilities. Having within-device skews and output transition times significantly improved over the E111, the EL11 is ideally suited for those applications which require the ultimate in AC performance.

The differential inputs of the EL11 employ clamping circuitry to maintain stability under open input conditions. If the inputs are left open (pulled to V_{EE}) the Q outputs will go LOW.

The 100 Series contains temperature compensation.

- 265 ps Propagation Delay
- 5 ps Skew Between Outputs
- ESD Protection: > 1 KV HBM, > 100 V MM
- PECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.7 with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.7 V
- Internal Input Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1

For Additional Information, see Application Note AND8003/D

- Flammability Rating: UL-94 code V-0 @ $1 / 8$ ",

Oxygen Index 28 to 34

- Transistor Count $=44$ devices

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

PIN DESCRIPTION

PIN	FUNCTION
D, $\overline{\mathrm{D}}$	ECL Data Inputs
Q0, $\overline{\mathrm{Q0} ;} \mathrm{Q1}, \overline{\mathrm{Q1}}$	ECL Data Outputs
V_{CC}	Positive Supply
V_{EE}	Negative Supply

ON Semiconductor ${ }^{\text {T }}$

http://onsemi.com

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC10EL11D	SO-8	98 Units/Rail
MC10EL11DR2	SO-8	2500 Tape \& Reel
MC100EL11D	SO-8	98 Units/Rail
MC100EL11DR2	SO-8	2500 Tape \& Reel
MC10EL11DT	TSSOP-8	98 Units/Rail
MC10EL11DTR2	TSSOP-8	2500 Tape \& Reel
MC100EL11DT	TSSOP-8	98 Units/Rail
MC100EL11DTR2	TSSOP-8	2500 Tape \& Reel

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
$\mathrm{V}_{\text {CC }}$	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8	V
$\mathrm{V}_{\text {EE }}$	NECL Mode Power Supply	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}$		-8	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
${ }^{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} \hline 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
TA	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction to Ambient)	$\begin{aligned} & \hline 0 \text { LFPM } \\ & 500 \text { LFPM } \end{aligned}$	$\begin{aligned} & \hline 8 \text { SOIC } \\ & 8 \text { SOIC } \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 130 \end{aligned}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {JC }}$	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to 44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA}	Thermal Resistance (Junction to Ambient)	$\begin{aligned} & \hline 0 \text { LFPM } \\ & 500 \text { LFPM } \end{aligned}$	$\begin{aligned} & 8 \text { TSSOP } \\ & 8 \text { TSSOP } \end{aligned}$	$\begin{aligned} & \hline 185 \\ & 140 \end{aligned}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to $44 \pm 5 \%$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder	<2 to 3 sec @ 248 ${ }^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

1. Maximum Ratings are those values beyond which device damage may occur.

10EL SERIES PECL DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}$ (Note 1.)

		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			
Symbol	Characteristic	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
I_{EE}	Power Supply Current		26	31		26	31		26	31	mA
V_{OH}	Output HIGH Voltage (Note 2.)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2.)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV
V_{IH}	Input HIGH Voltage (Single Ended)	3770		4110	3870		4190	3940		4280	mV
V_{IL}	Input LOW Voltage (Single Ended)	3050		3500	3050		3520	3050		3555	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential) (Note 3.)	2.5		4.6	2.5		4.6	2.5		4.6	V
I_{H}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.5			0.5			0.3			$\mu \mathrm{A}$

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary $1: 1$ with V_{CC}. $\mathrm{V}_{\text {EE }}$ can vary $+0.25 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2$ volts.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{I H C M R}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $\mathrm{V}_{\text {Ppmin }}$ and 1 V .
10EL SERIES NECL DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1.)

		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol	Characteristic	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		26	31		26	31		26	31	mA
V_{OH}	Output HIGH Voltage (Note 2.)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2.)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
V_{IH}	Input HIGH Voltage (Single Ended)	-1230		-890	-1130		-810	-1060		-720	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential) (Note 3.)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
I_{H}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
I/L	Input LOW Current	0.5			0.5			0.3			$\mu \mathrm{A}$

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $+0.25 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2$ volts.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V .

100EL SERIES PECL DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}$ (Note 1.)

		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol	Characteristic	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
I_{EE}	Power Supply Current		26	31		26	31		30	36	mA
V_{OH}	Output HIGH Voltage (Note 2.)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2.)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage (Single Ended)	3835		4120	3835		4120	3835		4120	mV
V_{IL}	Input LOW Voltage (Single Ended)	3190		3525	3190		3525	3190		3525	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential) (Note 3.)	2.5		4.6	2.5		4.6	2.5		4.6	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2$ volts.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $\mathrm{V}_{\text {Ppmin }}$ and 1 V .
100EL SERIES NECL DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1.)

		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol	Characteristic	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		26	31		26	31		30	36	mA
V_{OH}	Output HIGH Voltage (Note 2.)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2.)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential) (Note 3.)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
ILL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2$ volts.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{Pp} min and 1 V .
AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1.)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { tpLH } \\ t_{\text {PHL }} \end{array} \end{array}$	Propagation Delay to Output	135	260	385	190	265	340	215	290	365	ps
$\mathrm{t}_{\text {SKEW }}$	Within-Device Skew (Note 2.) Duty Cycle Skew (Note 3.)		5 5			$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ps
$\mathrm{t}_{\text {IITTER }}$	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V_{PP}	Input Swing (Note 4.)	150		1000	150		1000	150		1000	mV
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{r}} \\ \mathrm{t}_{\mathrm{f}} \end{array}$	$\begin{aligned} & \hline \text { Output Rise/Fall Times Q } \\ & (20 \%-80 \%) \end{aligned}$	100	225	350	100	225	350	100	225	350	ps

1. 10 Series: V_{EE} can vary $+0.25 \mathrm{~V} /-0.5 \mathrm{~V}$.

100 Series: $V_{E E}$ can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Within-device skew defined as identical transitions on similar paths through a device.
3. Duty cycle skew is the difference between a TPLH and TPHL propagation delay through a device.
4. $\mathrm{V}_{\mathrm{PP}(\mathrm{min})}$ is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.

MC10EL11, MC100EL11

Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.)

Resource Reference of Application Notes
AN1404
AN1405

MC10EL11, MC100EL11

PACKAGE DIMENSIONS

MC10EL11, MC100EL11

PACKAGE DIMENSIONS

TSSOP-8
 DT SUFFIX

PLASTIC TSSOP PACKAGE
CASE 948R-02
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
3. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	2.90	3.10	0.114	0.122		
B	2.90	3.10	0.114	0.122		
C	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65 BSC		0.026 BSC			
K	0.25		0.40	0.010		0.016
L	4.90 BSC		0.193 BSC			
M	0°		6°	0°		6°

MC10EL11, MC100EL11
Notes

MC10EL11, MC100EL11

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-378
*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

