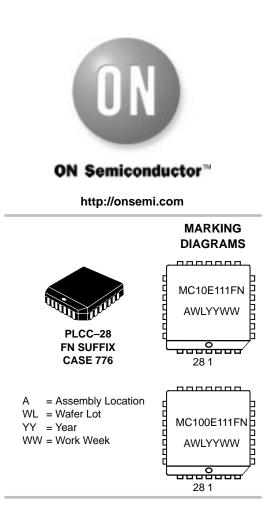
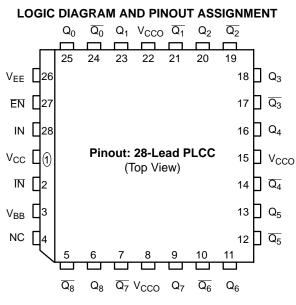
5V ECL 1:9 Differential Clock Driver

The MC10E/100E111 is a low skew 1-to-9 differential driver, designed with clock distribution in mind. It accepts one signal input, which can be either differential or else single-ended if the V_{BB} output is used. The signal is fanned out to 9 identical differential outputs. An enable input is also provided. A HIGH disables the device by forcing all Q outputs LOW and all \overline{Q} outputs HIGH.

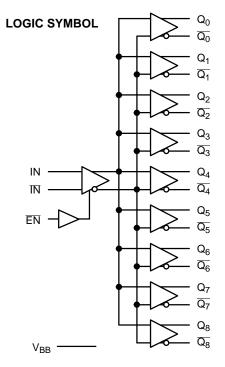

The device is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate to gate skew within-device, and empirical modeling is used to determine process control limits that ensure consistent t_{pd} distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

To ensure that the tight skew specification is met it is necessary that both sides of the differential output are terminated into 50 Ω , even if only one side is being used. In most applications, all nine differential pairs will be used and therefore terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on the same package side (i.e. sharing the same V_{CCO}) as the pair(s) being used on that side, in order to maintain minimum skew. Failure to do this will result in small degradations of propagation delay (on the order of 10–20 ps) of the output(s) being used which, while not being catastrophic to most designs, will mean a loss of skew margin.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.


The 100 Series contains temperature compensation.

- Guaranteed Skew Spec
- Differential Design
- V_{BB} Output
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC}=0 V$ with $V_{EE}=-4.2 V$ to -5.7 V
- Internal Input Pulldown Resistors
- ESD Protection: > 3 KV HBM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 178 devices


ORDERING INFORMATION

Device	Package	Shipping
MC10E111FN	PLCC-28	37 Units/Rail
MC10E111FNR2	PLCC-28	500 Units/Reel
MC100E111FN	PLCC-28	37 Units/Rail
MC100E111FNR2	PLCC-28	500 Units/Reel

 * All V_CC and V_CCO pins are tied together on the die.

Warning: All V_{CC}, V_{CCO}, and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

PIN DESCRIPTION

PIN	FUNCTION
IN, IN	ECL Differential Input Pair
ĒN	ECL Enable
$Q_0, \overline{Q_0} - Q_8, \overline{Q_8}$	ECL Differential Outputs
V _{BB}	Reference Voltage Output
V _{CC} , V _{CCO}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	$V_{EE} = 0 V$		8	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
ТА	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W °C/W
θJC	Thermal Resistance (Junction to Case)	std bd	28 PLCC	22 to 26	°C/W
V_{EE}	PECL Operating Range NECL Operating Range			4.2 to 5.7 -5.7 to -4.2	V V
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

1. Maximum Ratings are those values beyond which device damage may occur.

			–40°C 25°C		85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	60		48	60		48	60	mA
V _{OH}	Output HIGH Voltage (Note 2.)				4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2.)				3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single Ended)				3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage (Single Ended)				3050	3285	3520	3050	3302	3555	mV
V_{BB}	Output Voltage Reference	3.57		3.7	3.65		3.75	3.69		3.90	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3.)	2.6		4.6	2.6		4.6	2.6		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current				0.5	0.25		0.3	0.2		μA

10E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V (Note 1.)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. $\rm V_{EE}$ can vary +0.46 V / –0.06 V.

2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts. 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

10E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= –5.0 V (Note 1.)

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	60		48	60		48	60	mA
V _{OH}	Output HIGH Voltage (Note 2.)				-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 2.)				-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single Ended)				-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage (Single Ended)				-1950	-1715	-1480	-1950	-1698	-1445	mV
V _{BB}	Output Voltage Reference	-1.43		-1.30	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3.)	-2.4		-0.4	-2.4		-0.4		-2.4	-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current				0.5	0.065		0.3	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.06 V. 2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC.

			–40°C		25°C				85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	60		48	60		55	69	mA
V _{OH}	Output HIGH Voltage (Note 2.)				3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2.)				3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage (Single Ended)				3835	4120	4120	3835	4120	4120	mV
V _{IL}	Input LOW Voltage (Single Ended)				3190	3525	3525	3190	3525	3525	mV
V_{BB}	Output Voltage Reference	3.64		3.75	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3.)	2.6		4.6	2.6		4.6	2.6		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current				0.5	0.25		0.5	0.2		μA

100E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{FF}= 0.0 V (Note 1.)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. $\rm V_{EE}$ can vary +0.46 V / –0.8 V.

2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts. 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

100E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 1.)

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	60		48	60		55	69	mA
V _{OH}	Output HIGH Voltage (Note 2.)				-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 2.)				-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage (Single Ended)				-1165	-880	-880	-1165	-880	-880	mV
V _{IL}	Input LOW Voltage (Single Ended)				-1810	-1475	-1475	-1810	-1475	-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.25	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3.)	-2.4		-0.4	-2.4		-0.4	-2.4		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current				0.5	0.25		0.5	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V. 2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
t _{PLH} t _{PHL}	Propagation Delay to Output IN (Diff) (Note 2.) IN (SE) (Note 3.) Enable (Note 4.) Disable Note 4.)	380 280 400 400		680 780 900 900	480 430 450 450		580 630 850 850	510 460 450 450		610 660 850 850	ps
ts	Setup Time (Note 6.) EN to IN	250	0		200	0		200	0		ps
t _H	Hold Time (Note 7.) IN to EN	50	-200		0	-200		0	-200		ps
t _R	Release Time (Note 8.) EN to IN	350	100		300	100		300	100		ps
t _{skew}	Within-Device Skew (Note 5.)		25	75		25	50		25	50	ps
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP}	Minimum Input Swing	50			50			50			mV
t _r , t _f	Rise/Fall Time	250	450	650	275	375	600	275	375	600	ps

AC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1.)

 10 Series: V_{EE} can vary +0.46 V / -0.06 V. 100 Series: V_{EE} can vary +0.46 / -0.8 V.

 The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.

3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.

4. Enable is defined as the propagation delay from the 50% point of a **negative** transition on \overline{EN} to the 50% point of a **positive** transition on Q (or a negative transition on \overline{Q}). Disable is defined as the propagation delay from the 50% point of a **positive** transition on \overline{EN} to the 50% point of a **negative** transition on Q (or a positive transition on \overline{Q}).

5. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

6. The setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ±75 mV to that IN/IN transition (see Figure 1).

7. The hold time is the minimum time that \overline{EN} must remain asserted after a negative going IN or a positive going \overline{IN} to prevent an output response greater than ±75 mV to that IN/\overline{IN} transition (see Figure 2).

8. The release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and output transition times (see Figure 3).

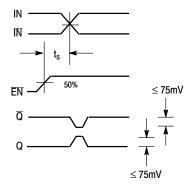
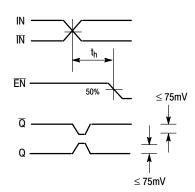



Figure 1. Setup Time

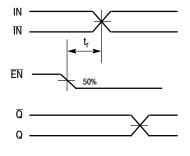
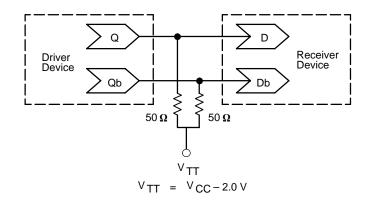
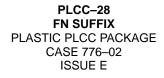
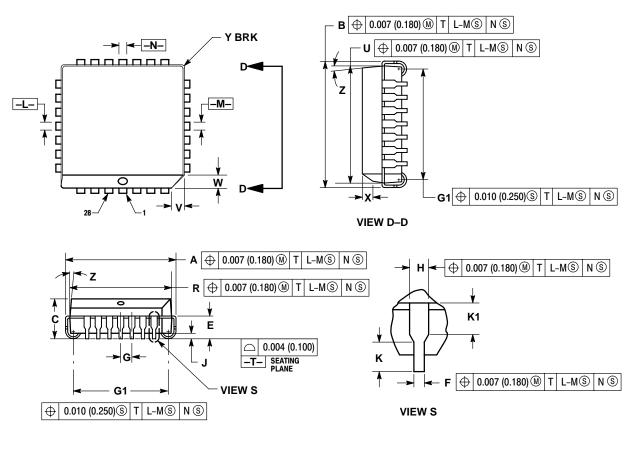


Figure 2. Hold Time

Figure 3. Release Time


Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404	ECLinPS Circuit Performance at Non–Standard VIH Levels	
AN1405	 ECL Clock Distribution Techniques 	
AN1406	 Designing with PECL (ECL at +5.0 V) 	
AN1503	 ECLinPS I/O SPICE Modeling Kit 	
AN1504	 Metastability and the ECLinPS Family 	
AN1568	 Interfacing Between LVDS and ECL 	
AN1596	- ECLinPS Lite Translator ELT Family SPICE I/O Model Kit	
AN1650	 Using Wire–OR Ties in ECLinPS Designs 	
AN1672	- The ECL Translator Guide	
AND8001	 Odd Number Counters Design 	
AND8002	 Marking and Date Codes 	
AND8020	 Termination of ECL Logic Devices 	

PACKAGE DIMENSIONS

NOTES:

- 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS
- WHERE TOP OF LEAD SHOULDER EATS
 PLASTIC BODY AT MOLD PARTING LINE.
 2. DIMENSION G1, TRUE POSITION TO BE
 MEASURED AT DATUM -T-, SEATING PLANE.
 3. DIMENSIONS R AND U DO NOT INCLUDE
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH.
- 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. 7. DIMENSION H DOES NOT INCLUDE DAMBAR DROTEVICION OF DURING THE DAMAGE
- PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
C	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
C	0.450	0.456	11.43	11.58
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y		0.020		0.50
Ζ	2 °	10°	2 °	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit=french@hibbertc.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.