General Description

The MAX9394/MAX9395 consist of a 2:1 multiplexer and a 1:2 demultiplexer with loopback. The multiplexer section (channel B) accepts two low-voltage differential signaling (LVDS) inputs and generates a single LVDS output. The demultiplexer section (channel A) accepts a single LVDS input and generates two parallel LVDS outputs. The MAX9394/MAX9395 feature a loopback mode that connects the input of channel A to the output of channel B and connects the selected input of channel B to the outputs of channel A.

Three LVCMOS/LVTTL logic inputs control the internal connections between inputs and outputs, one for the multiplexer portion of channel B (BSEL), and the other two for loopback control of channels A and B (LB_SELA and LB_SELB). Independent enable inputs for each differential output pair provide additional flexibility.

Fail-safe circuitry forces the outputs to a differential low condition for undriven inputs or when the commonmode voltage exceeds the specified range. The MAX9394 provides high-level input fail-safe detection for HSTL, LVDS, and other GND-referenced differential inputs. The MAX9395 provides low-level fail-safe detection for CML, LVPECL, and other V_{CC}-referenced differential inputs.

Ultra low 91ps_{P-P} (max) pseudorandom bit sequence (PRBS) jitter ensures reliable communications in highspeed links that are highly sensitive to timing error, especially those incorporating clock-and-data recovery, or serializers and deserializers. The high-speed switching performance guarantees 1.5GHz operation and less than 87ps (max) skew between channels.

LVDS inputs and outputs are compatible with the TIA/EIA-644 LVDS standard. The LVDS outputs drive 100 Ω loads. The MAX9394/MAX9395 are offered in a 32-pin TQFP package and operate over the extended temperature range (-40°C to +85°C).

Applications

High-Speed Telecom/Datacom Equipment

Central Office Backplane Clock Distribution

DSLAM

Protection Switching

Fault-Tolerant Systems

Pin Configurations and Functional Diagram appear at end of data sheet.

_ Features

 Guaranteed 1.5GHz Operation with 250mV Differential Output Swing

- Simultaneous Loopback Control
- 2ps_(RMS) (max) Random Jitter
- AC Specifications Guaranteed for 150mV Differential Input
- Signal Inputs Accept Any Differential Signaling Standard
- LVDS Outputs for Clock or High-Speed Data
- ♦ High-Level Input Fail-Safe Detection (MAX9394)
- Low-Level Input Fail-Safe Detection (MAX9395)
- ♦ 3.0V to 3.6V Supply Voltage Range
- LVCMOS/LVTTL Logic Inputs

_Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX9394EHJ	-40°C to +85°C	32 TQFP	H32-1
MAX9394EHJ+	-40°C to +85°C	32 TQFP	H32-1
MAX9395EHJ	-40°C to +85°C	32 TQFP	H32-1
MAX9395EHJ+	-40°C to +85°C	32 TQFP	H32-1

+Denotes a lead-free package.

Typical Operating Circuit

M/XI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +4.1V
IN, ĪN, OUT, OUT, EN,	_SEL, LB_SEL_
to GND	0.3V to $(V_{CC} + 0.3V)$
IN to IN	±3V
Short-Circuit Duration (OUT, OUT_)Continuous
Continuous Power Dissipation ($T_A = -$	+70°C)
32-Pin TQFP (derate 13.1mW/°C al	bove +70°C)1047mW
Junction-to-Ambient Thermal Resista	nce in Still Air

32-Pin TQFP.....+76.4°C/W

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection (Human Body Model)	
(IN, IN, OUT, OUT, EN	_, SEL_, LB_SEL_)±2kV
Soldering Temperature (10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3.0V \text{ to } 3.6V, R_{L} = 100\Omega \pm 1\%, EN_{_} = V_{CC}, V_{CM} = +0.05V \text{ to } (V_{CC} - 0.6V) (MAX9394), V_{CM} = +0.06V \text{ to } (V_{CC} - 0.05V) (MAX9395), T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, $|V_{ID}| = 0.2V$, $V_{CM} = 1.2V$, $T_{A} = +25^{\circ}C$.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	co	ONDITIONS	MIN	ТҮР	MAX	UNITS	
LVCMOS/LVTTL INPUTS (EN,	BSEL, LB_S	EL_)						
Input High Voltage	VIH			2.0		V _{CC}	V	
Input Low Voltage	VIL			0		0.8	V	
Input High Current	IIН	V_{IN} = 2.0V to V_{CC}		0		20	μA	
Input Low Current	١Ļ	$V_{IN} = 0V$ to 0.8V		0		10	μA	
DIFFERENTIAL INPUTS (IN, \overline{IN}	DIFFERENTIAL INPUTS (IN, ĪN)							
Differential Input Voltage	VID	$V_{ILD} \geq 0V$ and V_{IH}	D <u><</u> V _{CC} , Figure 1	0.1		3.0	V	
Input Common Mode Dance	Mar .	MAX9394		0.05		V _{CC} - 0.6	V	
Input Common-Mode Range	VСМ	MAX9395		0.6		V _{CC} - 0.05	v	
Input Current	_{IN} , _{TN_} _	MAX9394	IV _{ID} I <u><</u> 3.0V	-75		10		
		MAX9395	$ V_{ID} \le 3.0V$	-10		100		
LVDS OUTPUTS (OUT, OUT	_)							
Differential Output Voltage	VOD	$R_L = 100\Omega$, Figure	2	250	350	450	mV	
Change in Magnitude of V _{OD} Between Complementary Output States	ΔV _{OD}	Figure 2			1.0	50	mV	
Offset Common-Mode Voltage	Vos	Figure 2		1.125	1.25	1.375	V	
Change in Magnitude of V _{OS} Between Complementary Output States	ΔV _{OS}	Figure 2			1.0	50	mV	

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 3.0V \text{ to } 3.6V, R_{L} = 100\Omega \pm 1\%, EN_{-} = V_{CC}, V_{CM} = 0.05V \text{ to } (V_{CC} - 0.6V) (MAX9394), V_{CM} = 0.06V \text{ to } (V_{CC} - 0.05V) (MAX9395), T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, $|V_{ID}| = 0.2V$, $V_{CM} = 1.2V$, $T_{A} = +25^{\circ}C$.) (Notes 1, 2, and 3)

<u> </u>							
PARAMETER	SYMBOL	co	NDITIONS	MIN	TYP	MAX	UNITS
Output Short Circuit Current		$V_{10} = \pm 100 mV_{10}$	V_{OUT} or V_{OUT} = 0V		30	40	
(Output(s) Shorted to GND)	llosi	(Note 4)	V _{OUT} = V <u>OUT</u> = 0V		17	24	mA
Output Short-Circuit Current (Outputs Shorted Together)	ll _{OSB} l	$V_{ID} = \pm 100 \text{mV}, V_{OUT} = V_{\overline{OUT}}$ (Note 4)			5	12	mA
SUPPLY CURRENT							
		$R_L = 100\Omega$, EN_{-}	= V _{CC}		53	65	
Supply Current	ICC	R _L = 100Ω, EN 670MHz (1.34Gbp	= V _{CC} , switching at os)		53	65	mA

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3.0V \text{ to } 3.6V, f_{IN} < 1.34GHz, t_{R_IN} = t_{F_IN} = 125ps, R_L = 100\Omega \pm 1\%, |V_{ID}| \ge 150mV, V_{CM} = 0.075V \text{ to } (V_{CC} - 0.6V) \text{ (MAX9394 only)}, V_{CM} = 0.6V \text{ to } (V_{CC} - 0.075V) \text{ (MAX9395 only)}, EN_{_} = V_{CC}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted}. Typical values are at V_{CC} = 3.3V, |V_{ID}| = 0.2V, V_{CM} = 1.2V, f_{IN} = 1.34GHz, T_A = +25^{\circ}C.) \text{ (Note 5)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SEL to Switched Output	tswitch	Figure 3			1.1	ns
Disable Time to Differential Output Low	^t PHD	Figure 4			1.7	ns
Enable Time to Differential Output High	^t PDH	Figure 4			1.7	ns
Switching Frequency	fMAX	$V_{OD} \ge 250 \text{mV}$	1.5	2.2		GHz
Low-to-High Propagation Delay	t _{PLH}	Figures 1, 5	340	567	720	ps
High-to-Low Propagation Delay	t _{PHL}	Figures 1, 5	340	562	720	ps
Pulse Skew It _{PLH} – t _{PHL} I	t SKEW	Figures 1, 5 (Note 6)		12.4	86	ps
Output Channel-to-Channel Skew	tccs	Figure 6 (Note 7)		16	87	ps
Output Low-to-High Transition Time (20% to 80%)	t _R	$f_{IN_{-}} = 100MHz$, Figures 1, 5	112	154	187	ps
Output High-to-Low Transition Time (80% to 20%)	t _F	$f_{IN_{-}} = 100MHz$, Figures 1, 5	112	152	187	ps
Added Random Jitter	t _{RJ}	f _{IN} = 1.34GHz, clock pattern (Note 8)			2	ps(RMS)
Added Deterministic Jitter	t _D J	1.34Gbps, 2 ²³ - 1 PRBS (Note 8)		60	91	psp-p

Note 1: Measurements obtained with the device in thermal equilibrium. All voltages referenced to GND except V_{ID} , V_{OD} , and ΔV_{OD} . **Note 2:** Current into the device defined as positive. Current out of the device defined as negative.

Note 3: DC parameters production tested at $T_A = +25^{\circ}C$ and guaranteed by design and characterization for $T_A = -40^{\circ}C$ to $+85^{\circ}C$. **Note 4:** Current through either output.

Note 5: Guaranteed by design and characterization. Limits set at ±6 sigma.

Note 6: t_{SKEW} is the magnitude difference of differential propagation delays for the same output over the same conditions. t_{SKEW} = lt_{PHL} - t_{PLH}l.

Note 7: Measured between outputs of the same device at the signal crossing points for a same-edge transition under the same conditions. Does not apply to loopback mode.

Note 8: Device jitter added to the differential input signal.

Typical Operating Characteristics

_Pin Description

PIN	NAME	FUNCTION
1, 2, 3, 30, 31, 32	N.C.	No Connection. Not internally connected.
4, 9, 20, 25	GND	Ground
5	ENB	Channel B Output Enable. Drive ENB high to enable the LVDS outputs for channel B. An internal $435k\Omega$ resistor to GND pulls ENB low when unconnected.
6	OUTB	Channel B LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTB and $\overline{\text{OUTB}}$ at the receiver inputs to ensure proper operation.
7	OUTB	Channel B LVDS Inverting Output. Connect a 100Ω termination resistor between OUTB and $\overline{\text{OUTB}}$ at the receiver inputs to ensure proper operation.
8, 13, 24, 29	Vcc	Power-Supply Input. Bypass each V _{CC} to GND with a 0.1μ F and 0.01μ F ceramic capacitor. Install both bypass capacitors as close to the device as possible, with the 0.01μ F capacitor closest to the device.
10	ĪNBO	LVDS/HSTL (MAX9394) or LVPECL/CML (MAX9395) Inverting Input. An internal $128k\Omega$ pullup resistor to V _{CC} pulls the input high when unconnected (MAX9394). An internal $68k\Omega$ resistor to GND pulls the input low when unconnected (MAX9395).
11	INBO	LVDS/HSTL (MAX9394) or LVPECL/CML (MAX9395) Noninverting Input. An internal 128k Ω pullup resistor to V _{CC} pulls the input high when unconnected (MAX9394). An internal 68k Ω resistor to GND pulls the input low when unconnected (MAX9395).
12	LB_SELB	Loopback Select for Channel B Output. Connect LB_SELB to GND or leave unconnected to reproduce the INB_ (INB_) differential inputs at OUTB (OUTB). Connect LB_SELB to V _{CC} to loop back the INA (INA) differential inputs to OUTB (OUTB). An internal $435k\Omega$ resistor to GND pulls LB_SELB low when unconnected.
14	ĪNB1	LVDS/HSTL (MAX9394) or LVPECL/CML (MAX9395) Inverting Input. An internal 128k Ω pullup resistor to V _{CC} pulls the input high when unconnected (MAX9394). An internal 68k Ω resistor to GND pulls the input low when unconnected (MAX9395).
15	INB1	LVDS/HSTL (MAX9394) or LVPECL/CML (MAX9395) Noninverting Input. An internal 128k Ω pullup resistor to V _{CC} pulls the input high when unconnected (MAX9394). An internal 68k Ω resistor to GND pulls the input low when unconnected (MAX9395).
16	BSEL	Channel B Multiplexer Control Input. Selects the differential input to reproduce at the B channel differential output. Connect BSEL to GND or leave unconnected to select the INB0 (INB0) set of inputs. Connect BSEL to V _{CC} to select the INB1 (INB1) set of inputs. An internal 435k Ω resistor to GND pulls BSEL low when unconnected.
17	ENA1	Channel A1 Output Enable. Drive ENA1 high to enable the A1 LVDS outputs. An internal $435k\Omega$ resistor to GND pulls the ENA1 low when unconnected.
18	OUTA1	Channel A1 LVDS Inverting Output. Connect a 100Ω termination resistor between OUTA1 and $\overline{OUTA1}$ at the receiver inputs to ensure proper operation.
19	OUTA1	Channel A1 LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTA1 and OUTA1 at the receiver inputs to ensure proper operation.

		Pin Description (continued)
PIN	NAME	FUNCTION
21	ENA0	Channel A0 Output Enable. Drive ENA0 high to enable the A0 LVDS outputs. An internal 435 k Ω resistor to GND pulls ENA0 low when unconnected.
22	OUTAO	Channel A0 LVDS Inverting Output. Connect a 100Ω termination resistor between OUTA0 and $\overline{\text{OUTA0}}$ at the receiver inputs to ensure proper operation.
23	OUTA0	Channel A0 LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTA0 and OUTA0 at the receiver inputs to ensure proper operation.
26	INA	LVDS/HSTL (MAX9394) or LVPECL/CML (MAX9395) Noninverting Input. An internal 128k Ω pullup resistor to V _{CC} pulls the input high when unconnected (MAX9394). An internal 68k Ω resistor to GND pulls the input low when unconnected (MAX9395).
27	ĪNĀ	LVDS/HSTL (MAX9394) or LVPECL/CML (MAX9395) Inverting Input. An internal 128k Ω pullup resistor to V _{CC} pulls the input high when unconnected (MAX9394). An internal 68k Ω resistor to GND pulls the input low when unconnected (MAX9395).
28	LB_SELA	Loopback Select for Channel A Output. Connect LB_SELA to GND or leave unconnected to reproduce the INA (INA) differential inputs at OUTA_ (OUTA_). Connect LB_SELA to V _{CC} to loop back the INB_ (INB_) differential inputs to OUTA_ (OUTA_). An internal 435k Ω resistor to GND pulls LB_SELA low when unconnected.

Figure 1. Output Transition Time and Propagation Delay Timing Diagram

Figure 2. Test Circuit for VOD and VOS

Figure 3. Input to Rising/Falling Edge Select and Mux Switch Timing Diagram

7

Figure 4. Output Active-to-Disable and Disable-to-Active Test Circuit and Timing Diagram

Figure 5. Output Transition Time, Propagation Delay, and Output Channel-to-Channel Skew Test Circuit

M/IXI/M

Figure 6. Output Channel-to-Channel Skew

Detailed Description

The LVDS interface standard provides a signaling method for point-to-point communication over a controlled-impedance medium as defined by the ANSI TIA/EIA-644 standard. LVDS utilizes a lower voltage swing than other communication standards, achieving higher data rates with reduced power consumption, while reducing EMI emissions and system susceptibility to noise.

The MAX9394/MAX9395 high-speed, low-power 2:1 multiplexers and 1:2 demultiplexers with loopback provide signal redundancy switching in telecom and storage applications. These devices select one of two remote signal sources for local input and buffer a single local output signal to two remote receivers.

The multiplexer section (channel B) accepts two differential inputs and generates a single LVDS output. The demultiplexer section (channel A) accepts a single differential input and generates two parallel LVDS outputs. The MAX9394/MAX9395 feature a loopback mode that connects the input of channel A to the output of channel B and connects the selected input of channel B to the outputs of channel A. LB_SELA and LB_SELB provide independent loopback control for each channel.

Three LVCMOS/LVTTL logic inputs control the internal connections between inputs and outputs, one for the multiplexer portion of channel B (BSEL), and the other two for loopback control of channels A and B (LB_SELA and LB_SELB). Independent enable inputs for each differential output pair provide additional flexibility.

Input Fail-Safe

The differential inputs of the MAX9394/MAX9395 possess internal fail-safe protection. Fail-safe circuitry forces the outputs to a differential-low condition for undriven inputs or when the common-mode voltage exceeds the specified range. The MAX9394 provides high-level input fail-safe detection for LVDS, HSTL, and other GND-referenced differential inputs. The MAX9395 provides low-level input fail-safe detection for LVPECL, CML, and other V_{CC}-referenced differential inputs.

Select Function

BSEL selects the differential input pair to transmit through OUTB (OUTB) for LB_SELB = GND or through OUTA_ (OUTA_) for LB_SELA = V_{CC}. LB_SEL_ controls the loopback function for each channel. Connect LB_SEL_ to GND to select the normal inputs for each channel. Connect LB_SEL_ to V_{CC} to enable the loopback function. The loopback function routes the input of channel A to the output of channel B, and the inputs of channel B to the outputs of channel A. See Tables 1 and 2 for a summary of the input/output routing between channels.

Enable Function

The EN_ _ logic inputs enable and disable each set of differential outputs. Connect EN_ 0 to V_{CC} to enable the OUT_0/OUT_0 differential output pair. Connect EN_0 to GND to disable the OUT_0/OUT_0 differential output pair. The differential output pairs assert to a differential low condition when disabled.

Applications Information

Differential Inputs

The MAX9394/MAX9395 inputs accept any differential signaling standard within the specified common-mode voltage range. The fail-safe feature detects common-mode input signal levels and generates a differential output low condition for undriven inputs or when the common-mode voltage exceeds the specified range (V_{CM} \geq V_{CC} - 0.6V, MAX9394; V_{CM} \leq 0.6V, MAX9395). Leave unused inputs unconnected or connect to V_{CC} for the MAX9394 or to GND for the MAX9395.

Table 1. Input Select Truth Table

_					
LOGIC INPUTS			DIFFERENTIAL OUTPUTS		
LB_SELA	LB_SELB	BSEL	OUTA_/ OUTA_	OUTB / OUTB	
0	0	0	INA selected	INB0 selected	
0	0	1	INA selected	INB1 selected	
0	1	Х	INA selected	INA selected	
1	0	0	INB0 selected	INB0 selected	
1	0	1	INB1 selected	INB1 selected	
1	1	0	INB0 selected	INA selected	
1	1	1	INB1 selected	INA selected	
V D II				•	

X = Don't care.

Differential Outputs

The output common-mode voltage is not properly established if the LVDS output is higher than 0.6V when the supply voltage is ramping up at power-on. This condition can occur when an LVDS output drives an LVDS input on the same chip. To avoid this situation for the MAX9394/MAX9395, connect a $10k\Omega$ resistor from the noninverting output (OUT_) to ground, and connect a $10k\Omega$ resistor from the inverting output (\overline{OUT}) to ground. These pulldown resistors keep the output below 0.6V when the supply is ramping up (Figure 7).

Power-Supply Bypassing

Bypass each V_{CC} to GND with high-frequency surfacemount ceramic 0.1μ F and 0.01μ F capacitors in parallel as close to the device as possible. Install the 0.01μ F capacitor closest to the device.

Differential Traces

Input and output trace characteristics affect the performance of the MAX9394/MAX9395. Connect each input and output to a 50 Ω characteristic impedance trace. Maintain the distance between differential traces and eliminate sharp corners to avoid discontinuities in differential impedance and maximize common-mode noise immunity. Minimize the number of vias on the differential input and output traces to prevent impedance discontinuities. Reduce reflections by maintaining the 50 Ω characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

Output Termination

Terminate LVDS outputs with a 100Ω resistor between the differential outputs at the receiver inputs. LVDS outputs require 100Ω termination for proper operation.

Ensure that the output currents do not exceed the current limits specified in the *Absolute Maximum Ratings*.

Table 2. Loopback Select Truth Table

LB_SEL_	OUT
GND or open	Normal inputs selected.
V _{CC}	Loopback inputs selected.

Figure 7. Pulldown Resistor Configuration for LVDS Outputs

Observe the total thermal limits of the MAX9394/ MAX9395 under all operating conditions.

Cables and Connectors

Use matched differential impedance for transmission media. Use cables and connectors with matched differential impedance to minimize impedance discontinuities. Avoid the use of unbalanced cables.

Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to canceling effects.

Board Layout

Use a four-layer printed circuit (PC) board providing separate signal, power, and ground planes for high-speed signaling applications. Bypass V_{CC} to GND as close to the device as possible. Install termination resistors as close to receiver inputs as possible. Match the electrical length of the differential traces to minimize signal skew.

Functional Diagram

Chip Information

TRANSISTOR COUNT: 1565 PROCESS: BIPOLAR

_Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

- DIMENSIONS. THE TOP OF PACKAGE IS SMALLER THAN THE BOTTOM OF PACKAGE 4.
- THE TOP OF PACKAGE IS SMALLER THAN THE BUTTOM OF PACKAGE BY 0.15 MILLIMETERS.
 DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95, REGISTRATION MS-026
- NS-026. LEADS SHALL BE COPLANAR WITHIN .004 INCH. TOPMARK SHOWN IS FOR PACKAGE DRIENTATION REFERENCE ONLY.
- 8.

	JEDEC VA DIMENSIONS I	ARIATIONS N MILLIMETERS
	AA	A
	5×5×1	.0 MM
	MIN.	MAX.
Α	74	1.20
A1	0.05	0.15
Aa	0.95	1.05
D	6.80	7.20
D1	4.80	5.20
E	6.80	7.20
E1	4.80	5.20
L	0.45	0.75
Ν	3	2
e	0.50	BSC.
ю	0.17	0.27
b1	0.17	0.23
с	0.09	0.20
c 1	0.09	0.16

TITLE						
PACKAGE OUTLINE, 32L TQFP, 5x5x1.0mm						
APPROVAL	DOCUMENT CONTROL NO.	REV.	21			
	21-0110	В	1/2			

-DRAWING NOT TO SCALE-

Revision History

All pages changed at Rev 1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

14

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2007 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.