3.0V/3.3V Adjustable Mic roprocessor Supervisory Circuits

General Description

The MAX793/MAX794/MAX795 microprocessor ($\mu \mathrm{P}$) supervisory circuits monitor and control the activities of $+3.0 \mathrm{~V} /+3.3 \mathrm{~V} \mu \mathrm{Ps}$ by providing backup-battery switchover, among other features such as low-line indication, $\mu \mathrm{P}$ reset, write protection for CMOS RAM, and a watchdog (see the Selector Guide below). The backup-battery voltage can exceed VCC, permitting the use of 3.6 V lithium batteries in systems using 3.0 V to 3.3 V for Vcc .
The MAX793/MAX795 offer a choice of reset threshold voltage range (denoted by suffix letter): 3.00 V to 3.15 V (T), 2.85 V to $3.00 \mathrm{~V}(\mathrm{~S})$, and 2.55 V to $2.70 \mathrm{~V}(\mathrm{R})$. The MAX794's reset threshold is set externally with a resistor divider. The MAX793/MAX794 are available in 16-pin DIP and narrow SO packages, and the MAX795 comes in 8 -pin DIP and SO packages. For similar devices designed for 5 V systems, see the $\mu \mathrm{P}$ Supervisory Circuits table at the back of this data sheet.

Selector Guide

FEATURE	MAX793	MAX794	MAX795
Active-Low Reset	\checkmark	\checkmark	\checkmark
Active-High Reset	\checkmark	\checkmark	
Programmable Reset Threshold		\checkmark	
Low-Line Early Warning Output	\checkmark	\checkmark	
Backup-Battery Switchover	\checkmark	\checkmark	\checkmark
External Switch Driver	\checkmark	\checkmark	\checkmark
Power-Fail Comparator	\checkmark	\checkmark	
Battery OK Output	\checkmark		
Watchdog Input	\checkmark	\checkmark	
Battery Freshness Seal	\checkmark	\checkmark	
Manual Reset Input	\checkmark	\checkmark	
Chip-Enable Gating	\checkmark	\checkmark	\checkmark
Pins-Package	16-DIP/SO	16-DIP/SO	8-DIP/SO

Applications
Battery-Powered Computers and Controllers Embedded Controllers
Intelligent Controllers
Critical $\mu \mathrm{P}$ Power Monitoring
Portable Equipment

MAX793/MAX794/MAX795

- Precision Supply-Voltage Monitor: Fixed Reset Trip Voltage (MAX793/MAX795)
Adjustable Reset Trip Voltage (MAX794)
- Guaranteed Reset Assertion to Vcc = 1V
- Backup-Battery Power Switching-Battery Voltage Can Exceed Vcc
- On-Board Gating of Chip-Enable Signals-7ns Max Propagation Delay
MAX793/MAX794 Only
- Battery Freshness Seal
- Battery OK Output (MAX793)
- Uncommitted Voltage Monitor for Power-Fail or Low-Battery Warning
- Independent Watchdog Timer (1.6sec timeout)
- Manual Reset Input

Ordering Information

PART *	TEMP. RANGE	PIN-PACKAGE
MAX793_CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX79__CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX793_EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX793_ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO

Ordering Information continued on last page.
*The MAX793/MAX795 offer a choice of reset threshold voltage. Select the letter corresponding to the desired reset threshold voltage range ($\mathrm{T}=3.00 \mathrm{~V}$ to $3.15 \mathrm{~V}, \mathrm{~S}=2.85 \mathrm{~V}$ to $3.00 \mathrm{~V}, \mathrm{R}=2.55 \mathrm{~V}$ to 2.70 V) and insert it into the blank to complete the part number. The MAX794's reset threshold is adjustable.

Pin Configurations appear at end of data sheet.

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8 -Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW 8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................. 471 mW 16-Pin Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .842 mW 16-Pin Narrow SO (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ...696mW Operating Temperature Ranges
MAX793_C_IMAX794C_IMAX795_C__......... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ MAX793_E__/MAX794E__MAX795_E__........ $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10 sec) $300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=3.17 \mathrm{~V}\right.$ to 5.5 V for the MAX793T/MAX795T, $\mathrm{V}_{\mathrm{CC}}=3.02 \mathrm{~V}$ to 5.5 V for the MAX793S/MAX795S, $\mathrm{V}_{\mathrm{CC}}=2.72 \mathrm{~V}$ to 5.5 V for the MAX793R/MAX794/MAX795R, $V_{B A T T}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=3.17 \mathrm{~V}\right.$ to 5.5 V for the MAX793T/MAX795T, $\mathrm{V}_{C C}=3.02 \mathrm{~V}$ to 5.5 V for the $\mathrm{MAX793S} / \mathrm{MAX} 795 \mathrm{~S}, \mathrm{~V}_{\mathrm{CC}}=2.72 \mathrm{~V}$ to 5.5 V for the MAX793R/MAX794/MAX795R, $\mathrm{V}_{B A T T}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Reset Threshold (Note 8)	VRST	Vcc Falling	MAX793T/MAX795T	3.00	3.075	3.15	V
			MAX793S/MAX795S	2.85	2.925	3.00	
			MAX793R/MAX795R	2.55	2.625	2.70	
		VCC Rising	MAX793T/MAX795T	3.00	3.085	3.17	
			MAX793S/MAX795S	2.85	2.935	3.02	
			MAX793R/MAX795R	2.55	2.635	2.72	
RESET IN Threshold (MAX794 only)	VRST IN	VCC Falling		1.212	1.240	1.262	V
		VCC Rising		1.212	1.250	1.282	
RESET IN Leakage Current (MAX794 only)				-25	2	25	nA
Reset Timeout Period	tRP	$\mathrm{Vcc}<3.6 \mathrm{~V}$		140	200	280	ms
LOWLINE-to-Reset Threshold, (V LOWLINE $V_{\text {RST }}$, V_{CC} Falling	VLR	MAX793		30	45	60	mV
		MAX794		5	15	25	
Low-Line Comparator Hysteresis		MAX793			10		mV
		MAX794			10		
LOWLINE Threshold, VCC Rising	VLL	MAX793T/MAX795T				3.23	V
		MAX793S/MAX795S				3.08	
		MAX793R/MAX795R				2.78	
		MAX794				1.317	
PFI Input Threshold	$\mathrm{V}_{\text {TH }}$	VPFI falling		1.212	1.240	1.262	V
		VPFI rising		1.212	1.250	1.287	
PFI Input Current				-25	2	25	nA
PFI Hysteresis, PFI Rising					10	20	mV
BATT OK Threshold (MAX793)	VBOK			2.00	2.25	2.50	V
INPUT AND OUTPUT LEVELS							
RESET Output Voltage High	VOH	ISOURCE $=300 \mu \mathrm{~A}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {RST }} \mathrm{min}$		0.8 V cc	0.86 V cc		V
BATT OK, BATT ON, WDO, LOWLINE Output Voltage High	VOH	ISOURCE $=300 \mu \mathrm{~A}, \mathrm{~V}_{C C}=\mathrm{V}_{\text {RST }} \mathrm{max}$		0.8 Vcc	0.86 V CC		V
PFO Output Voltage High	V OH	ISOURCE $=65 \mu \mathrm{~A}, \mathrm{~V}$ CC $=\mathrm{V}_{\text {RST }}$ max		$0.8 \mathrm{~V}_{\mathrm{CC}}$			V
BATT ON Output Voltage High	VOH	$\text { ISOURCE }=100 \mu \mathrm{~A}, \mathrm{~V}_{C C}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=3 \mathrm{~V}$		0.8 V BATT			V
RESET Output Leakage Current (Note 9)	ILEAK	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {RST }}$ max		-1		-1	$\mu \mathrm{A}$
$\overline{\text { PFO }}$ Output Short to GND Current	Isc	$\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{PFO}}=0 \mathrm{~V}$			180	500	$\mu \mathrm{A}$
PFO, RESET, RESET, WDO, LOWLINE Output Voltage Low	VoL	ISINK $=1.2 \mathrm{~mA} ; \overline{\mathrm{RESE}}$ with $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RST}} \mathrm{min}$; WDO tested with $V_{C C}$, LOWLINE tested RESET, BATTOK, $=\mathrm{V}_{\text {RST }}$ max		0.08	0.2Vcc	V

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

ELECTRICAL CHARACTERISTICS (continued)

. MAX793R/MAX794/MAX795R, $\mathrm{V}_{\mathrm{BATT}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RESET Output Voltage Low	VOL	MAX79_C, $\mathrm{V}_{\text {BATT }}=\mathrm{V}_{\text {CC }}=1.0 \mathrm{~V}, \mathrm{ISINK}=40 \mu \mathrm{~A}$		0.13	0.3	V
		MAX79_E, $\mathrm{V}_{\text {BATT }}=\mathrm{V}_{C C}=1.2 \mathrm{~V}$, ISINK $=200 \mu \mathrm{~A}$		0.17	0.3	
BATT ON Output Voltage Low	VOL	$\mathrm{ISINK}=3.2 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {RST }} \mathrm{max}$			$0.2 \mathrm{~V}_{\mathrm{Cc}}$	V
All Inputs Including PFO (Note 10)	V_{IH}	$\mathrm{V}_{\text {RSt }}$ max $<\mathrm{V}_{\text {CC }}<5.5 \mathrm{~V}$			0.7 V cc	V
	VIL		0.3 V cc			
MANUAL RESET INPUT						
$\overline{\text { MR Pulse Width }}$	tMR	MAX793/MAX794 only	100	50		ns
$\overline{\mathrm{MR}}$-to-Reset Delay	tMD	MAX793/MAX794 only		75	250	ns
$\overline{\text { MR Pull-Up Current }}$		MAX793/MAX794 only, $\overline{\mathrm{MR}}=0 \mathrm{~V}$	25	70	250	$\mu \mathrm{A}$
CHIP-ENABLE GATING						
$\overline{\text { CE IN Leakage Current }}$	ILEAK	Disable mode		± 10		nA
$\overline{\mathrm{CE}}$ IN-to-CE OUT Resistance		Enable mode, $\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {RST }}$ max		46		Ω
$\overline{\mathrm{CE}}$ IN-to-CE OUT Propagation Delay		$\mathrm{V}_{C C}=\mathrm{V}_{\text {RST }} \mathrm{max}$, Figure 9		2	7	ns
$\overline{\mathrm{CE}}$ OUT Drive from $\overline{\mathrm{CE}}$ IN	VOH	$\begin{aligned} & \mathrm{V}_{C C}=\mathrm{V}_{\text {RST }} \max , \text { IOUT }=-1 \mathrm{~mA}, \\ & \mathrm{~V} \overline{\mathrm{CE}} \mathrm{IN}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	0.8 VCc			V
	VOL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {RST }} \max , \text { IOUT }=1.6 \mathrm{~mA}, \\ & \mathrm{~V} \overline{\mathrm{CE}} \mathrm{IN}=0 \mathrm{~V} \end{aligned}$			$0.2 \mathrm{~V}_{\mathrm{cc}}$	
Reset to $\overline{C E}$ OUT High Delay				10		$\mu \mathrm{s}$
$\overline{\text { CE OUT Output Voltage }}$ High (reset active)	VOH	$\mathrm{lOH}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}<2.3 \mathrm{~V}$	$0.8 \mathrm{~V}_{\text {BATT }}$			V
WATCHDOG (MAX793/MAX794 only)						
WDI Input Current		$\mathrm{OV}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}$	-1	0.01	1	$\mu \mathrm{A}$
Watchdog Timeout Period	twD		1.00	1.60	2.25	sec
WDI Pulse Width			1.00			ns

Note 1: Vcc supply current, logic input leakage, watchdog functionality (MAX793/MAX794), $\overline{M R}$ functionality (MAX793/MAX794), PFI functionality (MAX793/MAX794), state of RESET and RESET (MAX793/MAX794) tested at $\mathrm{V}_{\mathrm{BAT}}=3.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ The state of RESET is tested at $\mathrm{V}_{C C}=\mathrm{V}_{C C}$ min.
Note 2: Tested at $\mathrm{V}_{\mathrm{BA}} \mathrm{T}=3.6 \mathrm{~V}, \mathrm{~V} \mathrm{VC}=3.5 \mathrm{~V}$ and V V. The battery current will rise to $10 \mu \mathrm{~A}$ over a narrow transition window around $\mathrm{V}_{\mathrm{CC}}=1.9 \mathrm{~V}$.
Note 3: Leakage current into the battery is tested under the worst-case conditions at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{BA}} \mathrm{T}=1.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$, $V_{B A T}=1.0 \mathrm{~V}$.
Note 4: Guaranteed by design
Note 5: When $V_{S W}>V_{C C}>V_{B A T t, ~}$ OUT remains connected to $V_{C c}$ until $V_{C C}$ drops below $V_{B A T t}$. The $V_{C c}-t o-V_{B A T t}$ comparator has a small 15 mV typical hysteresis to prevent oscillation. For $\mathrm{V}_{\mathrm{cc}}<1.75 \mathrm{~V}$ (typical), OUT switches to BATT regardless of VBATt.
Note 6: When $V_{B A T T}>V_{C C}>V_{S W}$, OUT remains connected to $V_{C C}$ until $V_{C C}$ drops below the battery switch threshold (VSW). Note 7: OUT switches from BATT to VCc when Vcc rises above the reset threshold, if VBATT > VRST. In this case, switchover back to VCC occurs at the exact voltage that causes reset to be asserted, however switchover occurs 200 ms prior to reset. If $V_{B A T T}$ < VRST, OUT switches from BATT to VCc when VCc exceeds VBatt.
Note 8: The reset threshold tolerance is wider for $\mathrm{V}_{C C}$ rising than for $\mathrm{V}_{C C}$ falling to accommodate the 10 mV typical hysteresis, which prevents internal oscillation.
Note 9: The leakage current into or out of the RESET pin is tested with RESET not asserted (RESET output high impedance).
Note 10: $\overline{\text { PFO }}$ is normally an output, but is used as an input when activating the battery freshness seal.

3.0V/3.3V/Adjustable Mic roprocessor Supervisory Circuits

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits

MAX793/MAX794
PFI TO PFO PROPAGATION DELAY

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits

PIN		NAME	FUNCTION
MAX793/ MAX794	MAX795		
1	1	OUT	Supply Output for CMOS RAM. When V_{CC} rises above the reset threshold or above VBATT, OUT is connected to VCC through an internal P-channel MOSFET switch. When $V_{C C}$ falls below $V_{s w}$ and $V_{B A T T}$ BATT connects to OUT.
2	2	Vcc	Main Supply Input
3	-	BATT OK (MAX793)	Battery Status Output. High in normal operating mode when $V_{B A T T}$ exceeds $V_{B O K}$, otherwise low. VBATT is checked continuously. Disabled and logic low while V_{Cc} is below V_{SW}.
		RESET IN (MAX794)	Reset Input. Connect to an external resistor divider to select the reset threshold. The reset threshold can be programmed anywhere in the V_{SW} to 5.5 V range.
4	-	PFI	Power-Fail Comparator Input. When PFI is less than VPFT or when VCC falls below VSW, $\overline{\text { PFO goes low; otherwise, PFO remains high (see Power-Fail Comparator section). }}$ Connect to ground if unused.
5	3	BATT ON	Logic Output/External Bypass Switch-Driver Output. High when OUT switches to BATT. Low when OUT switches to V_{Cc}. Connect the base/gate of PNP/PMOS transistor to BATT ON for lout requirements exceeding 75 mA .
6	4	GND	Ground
7	-	$\overline{\text { PFO }}$	Power-Fail Comparator Output. When PFI is less than VPFT or when V_{CC} falls below VSW, PFO goes low; otherwise, $\overline{\text { PFO }}$ remains high. $\overline{\mathrm{PFO}}$ is also used to enable the battery freshness seal (see Battery Freshness Seal, and Power-Fail Comparator sections).
8	-	$\overline{\mathrm{MR}}$	Manual Reset Input. A logic low on $\overline{\mathrm{MR}}$ asserts reset. Reset remains asserted as long as $\overline{M R}$ is low and for 200 ms after $\overline{M R}$ returns high. The active-low input has an internal $70 \mu \mathrm{~A}$ pull-up current. In can be driven from a TTL- or CMOS-logic line or shorted to ground with a switch. Leave open if unused.
9	-	$\overline{\text { WDO }}$	Watchdog Output. $\overline{\text { WDO }}$ goes low if WDI remains either high or low for longer than the watchdog timeout period. $\overline{\text { WDO }}$ returns high on the next transition of WDI. WDO is a logic high for $\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{RST}}$, and low when V_{CC} is below V_{SW}.
10	-	WDI	Watchdog Input. If WDI remains either high or low for longer than the watchdog timeout period, the internal watchdog timer runs out and $\overline{\mathrm{WDO}}$ goes low. $\overline{\mathrm{WDO}}$ returns high on the next transition of WDI. Connect $\overline{\mathrm{WDO}}$ to $\overline{\mathrm{MR}}$ to generate a reset due to a watchdog fault.
11	5	$\overline{C E}$ IN	Chip-Enable Input. The input to the chip-enable gating circuit. Connect to GND if unused
12	6	$\overline{C E}$ OUT	Chip-Enable Output. $\overline{\mathrm{CE}}$ OUT goes low only when $\overline{\mathrm{CE}} \mathrm{IN}$ is low and reset is not asserted. If $\overline{C E}$ IN is low when reset is asserted, $\overline{C E}$ OUT will remain low for 10μ s or until $\overline{C E} I N$ goes high, whichever occurs first. CE OUT is pulled up to OUT.
13	-	RESET	Active-High Reset Output. Sources and sinks current. RESET is the inverse of RESET.
14	-	LOWLINE	Early Power-Fail Warning Output. Low when VCC falls to VLR. This output can be used to generate an NMI to provide early warning of imminent power-failure.
15	7	RESET	Open-Drain, Active-Low Reset Output. Pulses low for 200 ms when triggered, and stays low whenever V_{C} is below the reset threshold or when $\overline{\mathrm{MR}}$ is a logic low. It remains low for 200 ms after either $V_{C C}$ rises above the reset threshold, the watchdog triggers a reset (WDO connected to $\overline{M R}$), or MR goes low to high.
16	8	BATT	Backup-Battery Input. When V_{CC} falls below V_{SW} and V_{BA}, OUT switches from V_{CC} to BATT. When $V_{C C}$ rises above the reset threshold or above VBATT, OUT reconnects to $V_{C C}$. $V_{B A T T}$ may exceed $V_{C C}$. Connect V_{CC}, OUT, and BATT together if no battery is used.
A 1×1		7	

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

Detailed Description

General Timing Characteristics

The MAX793/MAX794/MAX795 are designed for 3.3V and 3 V systems, and provide a number of supervisory functions (see the Selector Guide on the front page). Figures 1 and 2 show the typical timing relationships of the various outputs during power-up and power-down with typical VCC rise and fall times.

Manual Reset Input (MAX793/MAX794)
Many microprocessor-based products require manualreset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. On the MAX793/MAX794, a logic low on MR asserts reset. Reset remains asserted while MR is low, and for tRP (200 ms) after it returns high. During the first half of the reset time-
out period (tRP), the state of $\overline{M R}$ is ignored if $\overline{\mathrm{PFO}}$ is externally forced low, to facilitate enabling the battery freshness seal. MR has an internal $70 \mu \mathrm{~A}$ pull-up current, so it can be left open if it is not used. This input can be driven with TTL- or CMOS-logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required. If $\overline{M R}$ is driven from long cables or the device is used in a noisy environment, connect a $0.1 \mu \mathrm{~F}$ capacitor from MR to ground to provide additional noise immunity.

Reset Outputs

A microprocessor's ($\mu \mathrm{P}$'s) reset input starts the $\mu \mathrm{P}$ in a known state. These MAX793/MAX794/MAX795 $\mu \mathrm{P}$ supervisory circuits assert a reset to prevent code execution errors during power-up, power-down, and

TYPICAL PROPAGATION DELAYS REFLECT A 40mV OVERDRIVE
MAX794: $\mathrm{V}_{\text {RESE IN }}=\mathrm{V}_{\text {CC }}\left(\mathrm{V}_{\text {RST IN }} / \mathrm{V}_{\text {RST }}\right)$
Figure 1. Timing Diagram, VCC Rising

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits

brownout conditions. $\overline{R E S E T}$ is guaranteed to be a logic low for 0 V < $\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{RST}}$, provided $\mathrm{V}_{\text {BATT }}$ is greater than 1 V . Without a backup battery (VBATT $=$ VCC $=$ VOUT), RESET is guaranteed valid for VCC $\geq 1 \mathrm{~V}$. Once VCC exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period (tRP); after this interval, RESET becomes high impedance (Figure 2). RESET is an open-drain output, and requires a pull-up resistor to VCC (Figure 3). Use a $4.7 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ pull-up resistor that will provide sufficient current to assure the proper logic levels to the $\mu \mathrm{P}$.

If a brownout condition occurs (Vcc dips below the reset threshold), RESET goes low. Each time RESET is asserted, it stays low for the reset timeout period. Any time VCC goes below the reset threshold, the internal timer restarts
The watchdog output ($\overline{\mathrm{WDO}}$) can also be used to initiate a reset. See the Watchdog Output section.
The RESET output is the inverse of the RESET output, and it can both source and sink current.

Figure 2. Timing Diagram, VCC Falling

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

Figure 3. MAX794 Standard Application Circuit

Reset Threshold

The MAX793T/MAX795T are intended for 3.3 V systems with a $\pm 5 \%$ power-supply tolerance and a 10% systems tolerance. Except when $\overline{M R}$ is asserted, reset will not assert as long as the power supply remains above $3.15 \mathrm{~V}(3.3 \mathrm{~V}-5 \%)$. Reset is guaranteed to assert before the power supply falls below 3.0 V ($3.3 \mathrm{~V}-10 \%$).
The MAX793S/MAX795S are designed for $3.3 \mathrm{~V} \pm 10 \%$ power supplies. Except when $\overline{\mathrm{MR}}$ is asserted, they are guaranteed not to assert reset as long as the supply remains above 3.0 V (3.0 V is just above $3.3 \mathrm{~V}-10 \%$). Reset is guaranteed to assert before the power supply falls below 2.85 V ($3.3 \mathrm{~V}-14 \%$).
The MAX793R/MAX795R are optimized to monitor 3.0V $\pm 10 \%$ power supplies. Reset will not occur until VCC falls below $2.7 \mathrm{~V}(3.0 \mathrm{~V}-10 \%)$, but is guaranteed to occur before the supply falls below $2.55 \mathrm{~V}(3.0 \mathrm{~V}-15 \%)$.
Program the MAX794's reset threshold with an external voltage divider to RESET IN. The reset-threshold tolerance will be a combination of the RESET IN tolerance and the tolerance of the resistors used to make the external voltage divider. Calculate the reset threshold as follows:

$$
\mathrm{V}_{\mathrm{RST}}=\mathrm{V}_{\mathrm{RST}} \text { IN }(\mathrm{R} 1 / \mathrm{R} 2+1)
$$

Figure 4. Battery Freshness Seal Enable Timing
Using the standard application circuit (Figure 3), the reset threshold may be programmed anywhere in the range of VSW (the battery switch threshold) to 5.5 V . Reset is asserted when VCC falls below VSW.

Battery Freshness Seal

The MAX793/MAX794's battery freshness seal disconnects the backup battery from internal circuitry until it is needed. This allows an OEM to ensure that the backup battery connected to BATT will be fresh when the final product is put to use. To enable the freshness seal, connect a battery to BATT, ground PFO, bring Vcc above the reset threshold and hold it there until reset is deasserted following the reset timeout period, then bring Vcc back down again (Figure 4). Once the battery freshness seal is enabled (disconnecting the backup battery from the internal circuitry and anything connected to OUT), it remains enabled until $\mathrm{VCC}_{\mathrm{C}}$ is brought above $\mathrm{V}_{\text {RST }}$. Note that connecting $\overline{\mathrm{PFO}}$ to $\overline{\mathrm{MR}}$ will not interfere with battery freshness seal operation.

BATT OK Output (MAX793)
BATT OK indicates the status of the backup battery. When reset is not asserted, the MAX793 checks the battery voltage continuously. If $\mathrm{V}_{B A T}$ is below $\mathrm{V}_{\mathrm{BOK}}$ (2.0 V min), BATT OK goes low; otherwise, it remains pulled up to Vcc. BATT OK also goes low when Vcc goes below Vsw.

Watchdog Input (MAX793/MAX794) In the MAX793/MAX794, the watchdog circuit monitors the $\mu \mathrm{P}$'s activity. If the $\mu \mathrm{P}$ does not toggle the watchdog input (WDI) within 1.6 sec , WDO goes low. The internal 1.6 sec timer is cleared and WDO returns high

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits

Figure 5. Watchdog Timing Relationship
either when a reset occurs or when a transition (low-tohigh or high-to-low) takes place at WDI. As long as reset is asserted, the timer remains cleared and does not count. As soon as reset is released or WDI changes state, the timer starts counting (Figure 5). WDI can detect pulses as short as 100 ns . Unlike the 5 V MAX690 family, the watchdog function cannot be disabled.

Watchdog Output (MAX793/MAX794) In the MAX793/MAX794, WDO remains high (WDO is pulled up to V_{CC}) if there is a transition or pulse at WDI during the watchdog timeout period. WDO goes low if no transition occurs at WDI during the watchdog timeout period. The watchdog function is disabled and WDO is a logic high when reset is asserted if $V_{C C}$ is above VSw. WDO is a logic low when VCC is below VSw.
If a system reset is desired on every watchdog fault, simply diode-OR connect WDO to MR (Figure 6). When a watchdog fault occurs in this mode, WDO goes low, pulling MR low, which causes a reset pulse to be issued. Ten microseconds after reset is asserted, the watchdog timer clears and WDO returns high. This delay results in a $10 \mu \mathrm{~s}$ pulse at WDO, allowing external circuitry to "capture" a watchdog fault indication. A continuous high or low on WDI will cause 200ms reset pulses to be issued every 1.6 sec .

Figure 6. Generating a Reset on Each Watchdog Fault

Chip-Enable Signal Gating

Internal gating of chip-enable (CE) signals prevents erroneous data from corrupting CMOS RAM in the event of an undervoltage condition. The MAX793/MAX794/MAX795 use a series transmission gate from CEIN to CE OUT (Figure 7). During normal operation (reset not asserted), the CE transmission gate is enabled and passes all CE transitions. When reset is asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS RAM. The short CE propagation delay from CEIN to CE OUT enables these $\mu \mathrm{P}$ supervisors to be used with most $\mu \mathrm{Ps}$. If $\overline{\mathrm{CE}}$ IN is low when reset asserts, $\overline{\mathrm{CE}}$ OUT remains low for typically 10μ s to permit completion of the current write cycle.

Chip-Enable Input

The CE transmission gate is disabled and CE IN is high impedance (disabled mode) while reset is asserted. During a power-down sequence when VCC passes the reset threshold, the CE transmission gate disables and $\overline{\text { CE }}$ IN immediately becomes high impedance if the voltage at $\overline{C E} I N$ is high. If $\overline{C E} I N$ is low when reset asserts, the CE transmission gate will disable at the moment CE IN goes high, or $10 \mu \mathrm{~s}$ after reset asserts, whichever occurs first (Figure 8). This permits the current write cycle to complete during power-down.

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

Figure 7. Chip-Enable Transmission Gate
The CE transmission gate remains disabled and $\overline{C E} I N$ remains high impedance (regardless of CE IN activity) for the first half of the reset timeout period (tRP / 2), any time a reset is generated. While disabled, CE IN is high impedance. When the CE transmission gate is enabled, the impedance of $\overline{C E} I N$ appears as a 46Ω resistor in series with the load at CE OUT.

The propagation delay through the CE transmission gate depends on $V_{C C}$, the source impedance of the drive connected to $\overline{C E} \operatorname{IN}$, and the loading on CE OUT (see the Chip-Enable Propagation Delay vs. CE OUT Load Capacitance graph in the Typical Operating Characteristics). The CE propagation delay is production tested from the 50% point on CE IN to the 50% point on CE OUT using a 50Ω driver and 50 pF of load capacitance (Figure 9). For minimum propagation delay, minimize the capacitive load at CE OUT, and use a low-output-impedance driver.

Chip-Enable Output

When the CE transmission gate is enabled, the impedance of CE OUT is equivalent to a 46Ω resistor in series with the source driving $\overline{C E} \operatorname{IN}$. In the disabled mode, the transmission gate is off and an active pull-up connects CE OUT to OUT (Figure 8). This pull-up turns off when the transmission gate is enabled.

Early Power-Fail Warning
 (MAX793/MAX794)

Critical systems often require an early warning indicating that power is failing. This warning provides time for the $\mu \mathrm{P}$ to store vital data and take care of any additional "housekeeping" functions, before the power supply gets too far out of tolerance for the $\mu \mathrm{P}$ to operate reliably. The MAX793/MAX794 offer two methods of achieving this early warning. If access to the unregulated supply is feasible, the power-fail comparator input (PFI) can be connected to the unregulated supply

Figure 8. Chip-Enable Timing

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits

Figure 9. CE Propagation Delay Test Circuit
through a voltage divider, with the power-fail comparator output (PFO) providing the NMI to the $\mu \mathrm{P}$ (Figure 10). If there is no easy access to the unregulated supply, the LOWLINE output can be used to generate an NMI to the $\mu \mathrm{P}$ (see LOWLINE Output section).

LOWLINE Output (MAX793/MAX794)
The low-line comparator monitors VCC with a threshold voltage typically 45 mV above the reset threshold (10 mV of hysteresis) for the MAX793, and 15 mV above RESET IN (4 mV of hysteresis) for the MAX794. For normal operation (V_{CC} above the reset threshold), LOWLINE is

Figure 10. Using the Power-Fail Comparator to Generate Power-Fail Warning
pulled to V_{CC}. Use LOWLINE to provide an NMI to the $\mu \mathrm{P}$ when power begins to fall.
In most battery-operated portable systems, reserve energy in the battery provides ample time to complete the shutdown routine once the low-line warning is encountered and before reset asserts. If the system must also contend with a more rapid Vcc fall time, such as when the main battery is disconnected or a highside switch is opened during normal operation, use capacitance on the VCC line to provide time to execute the shutdown routine (Figure 11).
First, calculate the worst-case time required for the system to perform its shutdown routine. Then, with the worstcase shutdown time, the worst-case load current, and the minimum low-line to reset threshold (VLR min), calculate the amount of capacitance required to allow the shutdown routine to complete before reset is asserted:
ChoLD > ILOAD x tSHDN / VLR
where ILOAD is the current being drained from the capacitor, VLR is the low-line to reset threshold difference (VLL - VRST), and TSHDN is the time required for the system to complete an orderly shutdown routine.

Power-Fail Comparator (MAX793/MAX794)
The MAX793/MAX794's PFI input is compared to an internal reference. If PFI is less than the power-fail threshold (VPFT), PFO goes low. The power-fail comparator is intended for use as an undervoltage detector to signal a failing power supply (Figure 12). However, the comparator does not need to be dedicated to this function because it is completely separate from the rest of the circuitry.

Figure 11. Using LOWLINE to Provide Power-Fail Warning to the $\mu \mathrm{P}$

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

Figure 12. Using the Power-Fail Comparator to Monitor an Additional Power Supply: (a) Vin Is Negative, (b) Vin Is Positive

The power-fail comparator turns off and PFO goes low when Vcc falls below Vsw on power-down. During the first half of the reset timeout period (tRP), $\overline{\text { PFO }}$ is forced high, irrespective of VPFI. At the beginning of the second half of tRP, the power-fail comparator is enabled and PFO follows PFI. If the comparator is unused, connect PFI to ground and leave PFO unconnected. PFO may be connected to $\overline{M R}$ so that a low voltage on PFI will generate a reset (Figure 12b). In this configuration, when the monitored voltage causes PFI to fall below VPFT, PFO pulls MR low, causing a reset to be asserted. Reset remains asserted as long as PFO holds MR low, and for 200 ms after PFO pulls MR high when the monitored supply is above the programmed threshold.

Backup-Battery Switchover In the event of a brownout or power failure, it may be necessary to preserve the contents of RAM. With a backup battery installed at BATT, the devices automatically switch RAM to backup power when VCC falls. In order to allow the backup battery (e.g., a 3.6 V lithium cell) to have a higher voltage than V_{cc}, this family of $\mu \mathrm{P}$ supervisors (designed for 3.3 V and 3 V systems) does not always connect BATT to OUT when VBATt is greater than Vcc. BATT connects to OUT (through a 140Ω switch) either when VCc falls below VSW and
$V_{B A T T}$ is greater than $V_{C C}$, or when $V_{C C}$ falls below 1.75 V (typ) regardless of the BATT voltage.

Switchover at VSw ensures that battery-backup mode is entered before Vout gets too close to the 2.0 V minimum required to reliably retain data in most CMOS RAM, (switchover at higher Vcc voltages would decrease backup-battery life). When VCC recovers, switchover is deferred either until VCc crosses VBATT if $V_{B A T T}$ is below $V_{\text {RST }}$, or when VCC rises above the reset threshold (VRST) if VBATt is above VRST. This power-up switchover technique prevents Vcc from charging the backup battery through OUT when using an external transistor driven by BATT ON. OUT connects to VCc through a 4Ω (max) PMOS power switch when Vcc crosses the reset threshold (Figure 13).

BATT ON (MAX793/MAX794)

BATT ON is high when OUT is connected to BATT. Although BATT ON can be used as a logic output to indicate the battery switchover status, it is most often used as a gate or base drive for an external pass transistor for high-current applications (see Driving an External Switch with BATT ON in the Applications Information section). When VCc exceeds VRST on power-up, BATT ON sinks 3.2 mA at 0.4 V . In batterybackup mode, this terminal sources $100 \mu \mathrm{~A}$ from BATT.

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits

Figure 13. Battery Switchover Timing
Table 1. Input and Output Status in Battery-Backup Mode

PIN NAME	STATUS
OUT	Connected to BATT through an internal 140Ω switch
VCC	Disconnected from OUT
BATT ON	Pulled up to BATT
BATT OK	Logic low
PFI	Disabled
$\overline{\text { PFO }}$	Logic low
$\overline{\text { MR }}$	Disabled, but still pulled up to VCC
$\overline{\text { WDO }}$	Logic low
WDI	Disabled
$\overline{\text { RESET }}$	Logic low
RESET	Pulled up to VCC
BATT	Connected to OUT
$\overline{\text { LOWLINE }}$	Logic low
$\overline{\text { CE IN }}$	High impedance
$\overline{\text { CE OUT }}$	Pulled to BATT

Applications Information

These $\mu \mathrm{P}$ supervisory circuits are not short-circuit protected. Shorting VOUT to ground, excluding power-up transients such as charging a decoupling capacitor, destroys the device. Decouple both VCC and BATT pins to ground by placing $0.1 \mu \mathrm{~F}$ ceramic capacitors as close to the device as possible.

Driving an External Switch with BATT ON BATT ON can be directly connected to the base of a PNP transistor or the gate of a PMOS transistor. The PNP connection is straightforward: connect the emitter
to V_{CC}, the collector to OUT, and the base to BATT ON (Figure 14a). No current-limiting resistor is required, but a resistor connecting the base of the PNP to BATT ON can be used to limit the current drawn from VCC, prolonging battery life in portable equipment.
If you are using a PMOS transistor, however, it must be connected backwards from the traditional method. Connect the gate to BATT ON, the drain to VCC, and the source to OUT (Figure 14b). This method orients the body diode from VCC to OUT and prevents the backup battery from discharging through the FET when its gate is high. Two PMOS transistors in the Siliconix LITTLE FOOT ${ }^{\text {TM }}$ series are specified with V_{GS} down to -2.7 V . The Si9433DY has a maximum $100 \mathrm{~m} \Omega$ drainsource on-resistance with 2.7 V of gate drive and a 2 A drain-source current. The Si9434DY specifies a $60 \mathrm{~m} \Omega$ drain-source on-resistance with 2.7 V of gate drive and a 5.1 A drain-source current.

Using a SuperCap ${ }^{T M}$ as a Backup Power Source

 SuperCaps ${ }^{\text {TM }}$ are capacitors with extremely high capacitance values (e.g., order of 0.47F) for their size. Figure 15 shows two ways to use a SuperCap as a backup power source. The SuperCap can be connected through a diode to the 3V input (Figure 15a); or, if a 5 V supply is also available, the SuperCap can be charged up to the 5 V supply (Figure 15b), allowing a longer backup period. Since VBATT can exceed VCC while Vcc is above the reset threshold, there are no special precautions when using these $\mu \mathrm{P}$ supervisors with a SuperCap.Operation without a
Backup Power Source
These $\mu \mathrm{P}$ supervisors were designed for batterybacked applications. If a backup battery is not used, connect BATT, OUT, and Vcc together, or use a different $\mu \mathrm{P}$ supervisor. See the $\mu \mathrm{P}$ Supervisory Circuits table at the end of this data sheet.

Replacing the Backup Battery
The backup power source can be removed while VCC remains valid, without danger of triggering a reset pulse, provided that BATT is decoupled with a $0.1 \mu \mathrm{~F}$ capacitor to ground. As long as VCC stays above the reset threshold, battery-backup mode cannot be entered.

[^0]
3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

MAX793/MAX794/MAX795

Figure 14. Driving an External Transistor with BATT ON

(a)

(b)

Figure 15. Using a SuperCap ${ }^{T M}$ as a Backup Source

Adding Hysteresis to the Power-Fail

 Comparator (MAX793/MAX794)The power-fail comparator has a typical input hysteresis of 10 mV . This is sufficient for most applications where a power-supply line is being monitored through an external voltage divider (see the section Monitoring an Additional Power Supply).
If additional noise margin is desired, connect a resistor between $\overline{\mathrm{PFO}}$ and PFI as shown in Figure 16a. Select the ratio of R1 and R2 such that PFI sees VPFT when VIN falls to its trip point (VTRIP). R3 adds the additional hysteresis and should typically be more than 10 times the value of R1 or R2. The hysteresis window extends both above (VH) and below (VL) the original trip point (VTRIP).

Connecting an ordinary signal diode in series with R3, as shown in Figure 16b, causes the lower trip point (VL) to coincide with the trip point without hysteresis (VTRIP), so the entire hysteresis window occurs above VTRIP. This method provides additional noise margin without compromising the accuracy of the power-fail threshold when the monitored voltage is falling. It is useful for accurately detecting when a voltage falls past a threshold. The current through R1 and R2 should be at least $1 \mu \mathrm{~A}$ to ensure that the 25 nA (max over temperature) PFI input current does not shift the trip point. R3 should be larger than $82 \mathrm{k} \Omega$ so it does not load down the PFO pin. Capacitor C 1 is optional, and adds noise rejection.

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits

$$
\begin{array}{lr}
V_{T R I P}=V_{\text {PFT }}\left(\frac{R 1+R 2}{R 2}\right) & \text { WHERE } V_{\text {PFT }}=1.237 \mathrm{~V} \\
V_{H}=\left(V_{\text {PFT }}+V_{\text {PFH }}\right)(R 1)\left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}\right) & V_{\text {PFH }}=10 \mathrm{mV} \\
V_{L}=R 1\left[V_{\text {PFT }}\left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}\right)-\frac{V_{C C}}{R 3}\right]
\end{array}
$$

$\mathrm{V}_{\mathrm{TRIP}}=\mathrm{V}_{\mathrm{PF}}\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right)$
$\mathrm{V}_{\mathrm{H}}=\mathrm{R} 1\left[\left(\mathrm{~V}_{\mathrm{PFT}}+\mathrm{V}_{\text {PFH }}\right)\left(\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}\right)-\frac{\mathrm{V}_{\mathrm{D}}}{\mathrm{R} 3}\right]$
WHERE VPFT $=1.237 \mathrm{~V}$
$V_{\text {PFH }}=10 \mathrm{mV}$
$V_{D}=$ DIODE FORWARD VOLTAGE DROP
$V_{L}=V_{T R P}$
$V_{L}=V_{\text {TRIP }}$
(b)

Figure 16. Adding Hysteresis to the Power-Fail Comparator: (a) Symmetrical Hysteresis, (b) Hysteresis Only on Rising VIN

Monitoring an Additional Power Supply These $\mu \mathrm{P}$ supervisors can monitor either positive or negative supplies using a resistor voltage divider to PFI. PFO can be used to generate an interrupt to the $\mu \mathrm{P}$ or to cause reset to assert (Figure 12).

Interfacing to $\mu \mathrm{Ps}$ with Bidirectional Reset Pins

Since the RESET output is open drain, the MAX793/ MAX794/MAX795 interface easily with μ Ps that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the RESET output of the $\mu \mathrm{P}$ supervisor directly to the RESET input of the microcontroller with a single pull-up resistor allows either device to assert reset (Figure 17).

Negative-Going VCC Transients
These supervisors are relatively immune to short-duration negative-going Vcc transients (glitches) while issuing resets to the $\mu \mathrm{P}$ during power-up, power-down, and brownout conditions. Therefore, resetting the $\mu \mathrm{P}$ when $V_{C C}$ experiences only small glitches is usually not recommended.

Figure 17. Interfacing to μ Ps with Bidirectional Reset I/O

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

Figure 18 shows maximum transient duration vs. resetcomparator overdrive, for which reset pulses are not generated. The graph was produced using negativegoing VCC pulses, starting at 3.3 V and ending below the reset threshold by the magnitude indicated (reset comparator overdrive). The graph shows the maximum pulse width a negative-going VCC transient can typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a Vcc transient that goes 40 mV below the reset threshold and lasts for $10 \mu \mathrm{~s}$ or less will not cause a reset pulse to be issued.
A $0.1 \mu \mathrm{~F}$ bypass capacitor mounted close to the Vcc pin provides additional transient immunity.

Figure 18. Maximum Transient Duration without Causing a Reset Pulse vs. Reset Comparator Overdrive

Watchdog Software Considerations

There is a way to help the watchdog timer monitor software execution more closely, which involves setting and resetting the watchdog input at different points in the program rather than "pulsing" the watchdog input high-low-high or low-high-low. This technique avoids a "stuck" loop, in which the watchdog timer would continue to be reset within the loop, keeping the watchdog from timing out. Figure 19 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the beginning of every subroutine or loop, then set high again when the program returns to the beginning. If the program should "hang" in any subroutine, the problem would quickly be corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued.

Figure 19. Watchdog Flow Diagram

3.0V/3.3V Adjustable Mic roprocessor Supervisory Circ uits

Future product-contact factory for availability. Specifications are preliminary.

3.0V/3.3V Adjustable Microprocessor Supervisory Circ uits

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 \qquad

[^0]: TM LITTLE FOOT is a trademark of Siliconix Inc. SuperCap is a trademark of Baknor Industries.

