General Description

The MAX6956 compact, serial-interfaced LED display driver/I/O expander provide microprocessors with up to 28 ports. Each port is individually user configurable to either a logic input, logic output, or common-anode (CA) LED constant-current segment driver. Each port configured as an LED segment driver behaves as a digitally controlled constant-current sink, with 16 equal current steps from 1.5mA to 24mA. The LED drivers are suitable for both discrete LEDs and CA numeric and alphanumeric LED digits.

Each port configured as a general-purpose I/O (GPIO) can be either a push-pull logic output capable of sinking 10mA and sourcing 4.5mA, or a Schmitt logic input with optional internal pullup. Seven ports feature configurable transition detection logic, which generates an interrupt upon change of port logic level. The MAX6956 is controlled through an l²C[™]-compatible 2-wire serial interface, and uses four-level logic to allow 16 I²C addresses from only 2 select pins.

The MAX6956AAX and MAX6956ATL have 28 ports and are available in 36-pin SSOP and 40-pin thin QFN packages, respectively. The MAX6956AAI and MAX6956ANI have 20 ports and are available in 28-pin SSOP and 28-pin DIP packages, respectively.

Features

- 400kbps I²C-Compatible Serial Interface
- 2.5V to 5.5V Operation
- ♦ -40°C to +125°C Temperature Range
- ♦ 20 or 28 I/O Ports, Each Configurable as **Constant-Current LED Driver Push-Pull Logic Output** Schmitt Logic Input Schmitt Logic Input with Internal Pullup
- ♦ 11µA (max) Shutdown Current
- 16-Step Individually Programmable Current **Control for Each LED**
- Logic Transition Detection for Seven I/O Ports

Ordering Information

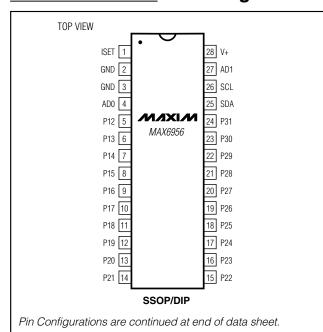
PART	TEMP RANGE	PIN-PACKAGE
MAX6956ANI	-40°C to +125°C	28 DIP
MAX6956AAI	-40°C to +125°C	28 SSOP
MAX6956AAX	-40°C to +125°C	36 SSOP
MAX6956ATL	-40°C to +125°C	40 Thin QFN

Set-Top Boxes Panel Meters White Goods Automotive

Applications

Bar Graph Displays Industrial Controllers System Monitoring

Typical Operating Circuit appears at end of data sheet.


I²C is a trademark of Philips Corp.

M/IXI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Pin Configurations

ABSOLUTE MAXIMUM RATINGS

Voltage (with Respect to GND)

0.3V to +6V
0.3V to +6V
0.3V to (V+ + 0.3V)
±30mA
800mA
$T_A = +70^{\circ}C)1667mW$

28-Pin SSOP (derate 9.5mW/°C above $T_A = +70^{\circ}C$)..762mW 36-Pin SSOP (derate 11.8mW/°C above $T_A = +70^{\circ}C$)..941mW 40-Pin QFN (derate 26.3mW/°C above $T_A = +70^{\circ}C$)..2105mW Operating Temperature Range

(IMIN to IMAX)	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10	s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Typical Operating Circuit, V+ = 2.5V to 5.5V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			ТҮР	MAX	UNITS	
Operating Supply Voltage	V+			2.5		5.5	V	
			$T_A = +25^{\circ}C$		5.5	8		
Shutdown Supply Current	ISHDN	All digital inputs at V+ or GND	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			10	μA	
			$T_A = T_{MIN}$ to T_{MAX}			11		
		All ports programmed	$T_A = +25^{\circ}C$		180	230		
Operating Supply Current	IGPOH	as outputs high, no load, all other inputs at	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			250	μA	
		V+ or GND	$T_A = T_{MIN}$ to T_{MAX}			270		
		All ports programmed	$T_A = +25^{\circ}C$		170	210		
Operating Supply Current	IGPOL	as outputs low, no load, all other inputs at	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			230	μA	
		V+ or GND	$T_A = T_{MIN}$ to T_{MAX}			240	1	
Operating Supply Current		All ports programmed	$T_A = +25^{\circ}C$		110	135		
	ILED	as LED outputs, all LEDs off, no load, all other	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			140	μA	
		inputs at V+ or GND	$T_A = T_{MIN}$ to T_{MAX}			145		
INPUTS AND OUTPUTS							•	
Logic-High Input Voltage Port Inputs	VIH			0.7 × V+			V	
Logic-Low Input Voltage Port Inputs	VIL					0.3 × V+	V	
Input Leakage Current	I _{IH} , I _{IL}	GPIO inputs without pull V _{PORT} = V+ to GND	lup,	-100	±1	+100	nA	
GPIO Input Internal Pullup to V+	IPU	V+ = 2.5V		12	19	30	μA	
	_	V+ = 5.5V		80	120	180		
Hysteresis Voltage GPIO Inputs	ΔV_{I}				0.3		V	
		GPIO outputs, $I_{SOURCE} = 2mA$, $T_A = -40^{\circ}C$ to +85°C		V+ - 0.7				
Output High Voltage	V _{OH}	GPIO outputs, ISOURCE T _{MAX} (Note 2)	V+ - 0.7			V		
Port Sink Current	IOL	$V_{PORT} = 0.6V$		2	10	18	mA	
Output Short-Circuit Current	IOLSC	Port configured output lo	ow, shorted to V+	2.75	11	20	mA	

M/X/M

ELECTRICAL CHARACTERISTICS (continued)

(Typical Operating Circuit, $V_{+} = 2.5V$ to 5.5V, $T_{A} = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		V+ = 2.5V, V _{LED} = 2.3V at maximum LED current	9.5	13.5	18	
Port Drive LED Sink Current, Port Configured as LED Driver	IDIGIT	V+ = 3.3V, V _{LED} = 2.4V at maximum LED current (Note 2)	18.5	24	27.5	mA
		V+ = 5.5V, V _{LED} = 2.4V at maximum LED current	19	25	30	
Port Drive Logic Sink Current,		V+ = 2.5V, V _{OUT} = 0.6V at maximum sink current	18.5	23	28	mA
Port Configured as LED Driver	IDIGIT_SC	V+ = 5.5V, V _{OUT} = 0.6V at maximum sink current	19	ША		
Input High-Voltage SDA, SCL, AD0, AD1	VIH		0.7 × V+			V
Input Low-Voltage SDA, SCL, AD0, AD1	VIL				0.3 × V+	V
Input Leakage Current SDA, SCL	I _{IH} , I _{IL}		-50		50	nA
Input Capacitance		(Note 2)			10	рF
Output Low-Voltage SDA	VOL	I _{SINK} = 6mA			0.4	V

TIMING CHARACTERISTICS (Figure 2)

(V+ = 2.5V to 5.5V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 1)

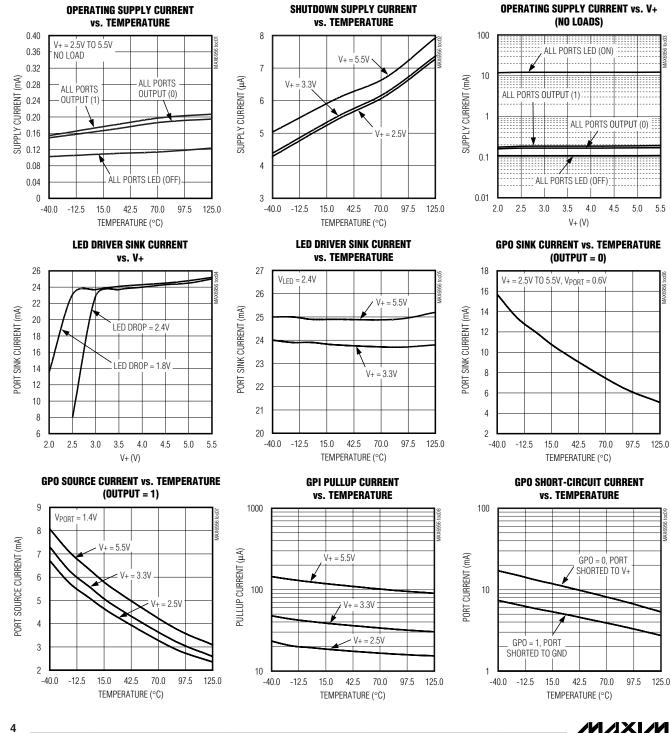
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serial Clock Frequency	fscl				400	kHz
Bus Free Time Between a STOP and a START Condition	t _{BUF}		1.3			μs
Hold Time (Repeated) START Condition	^t HD, STA		0.6			μs
Repeated START Condition Setup Time	tSU, STA		0.6			μs
STOP Condition Setup Time	tsu, sto		0.6			μs
Data Hold Time	^t hd, dat	(Note 3)	15		900	ns
Data Setup Time	^t SU, DAT		100			ns
SCL Clock Low Period	tLOW		1.3			μs
SCL Clock High Period	thigh		0.7			μs
Rise Time of Both SDA and SCL Signals, Receiving	t _R	(Notes 2, 4)		20 + 0.1C _b	300	ns
Fall Time of Both SDA and SCL Signals, Receiving	tF	(Notes 2, 4)		20 + 0.1C _b	300	ns
Fall Time of SDA Transmitting	tf,tx	(Notes 2, 5)		20 + 0.1C _b	250	ns
Pulse Width of Spike Suppressed	tsp	(Notes 2, 6)	0		50	ns
Capacitive Load for Each Bus Line	Cb	(Note 2)			400	pF

Note 1: All parameters tested at $T_A = +25^{\circ}C$. Specifications over temperature are guaranteed by design.

Note 2: Guaranteed by design.

Note 3: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V_{IL} of the SCL signal) in order to bridge the undefined region of SCL's falling edge.

Note 4: C_b = total capacitance of one bus line in pF. t_R and t_F measured between 0.3V+ and 0.7V+.


Note 5: $I_{SINK} \le 6mA$. C_b = total capacitance of one bus line in pF. t_R and t_F measured between 0.3V+ and 0.7V+.

Note 6: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.

 $(R_{ISET} = 39k\Omega, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics

MAX6956

4

Pin Description

	PIN		NAME	FUNCTION						
SSOP/DI	SSOP	THIN QFN	NAME	FUNCTION						
1	1	36	ISET	Segment Current Setting. Connect ISET to GND through a resistor (R_{ISET}) to set the maximum segment current.						
2, 3	2, 3	37, 38, 39	GND	Ground						
4	4	40	AD0	Address Input 0. Sets device slave address. Connect to either GND, V+, SCL, SDA to give four logic combinations. See Table 3.						
5–24			P12-P31	LED Segment Drivers and GPIO. P12 to P31 can be configured as CA LED drivers, GPIO outputs, CMOS logic inputs, or CMOS logic inputs with weak pullup resistor.						
_	5–32	1–10, 12–19, 21–30	P4-P31	LED Segment Drivers and GPIO. P4 to P31 can be configured as CA LED drivers, GPIO outputs, CMOS logic inputs, or CMOS logic inputs with weak pullup resistor.						
	_	11, 20, 31	N.C.	No Connection						
25	33	32	SDA	I ² C-Compatible Serial Data I/O						
26	34	33	SCL	I ² C-Compatible Serial Clock Input						
27	35	34	AD1	Address Input 1. Sets device slave address. Connect to either GND, V+, SCL, SDA to give four logic combinations. See Table 3.						
28	36	35	V+	Positive Supply Voltage. Bypass V+ to GND with minimum 0.047µF capacitor.						

Detailed Description

The MAX6956 LED driver/GPIO peripheral provides up to 28 I/O ports, P4 to P31, controlled through an I²C-compatible serial interface. The ports can be configured to any combination of constant-current LED drivers, logic inputs and logic outputs, and default to logic inputs on power-up. When fully configured as an LED driver, the MAX6956 controls up to 28 LED segments with individual 16-step adjustment of the constant current through each LED segment. A single resistor sets the maximum segment current for all segments, with a maximum of 24mA per segment. The MAX6956 drives any combination of discrete LEDs and CA digits, including sevensegment and starburst alphanumeric types.

Figure 1 is the MAX6956 functional diagram. Any I/O port can be configured as a push-pull output (sinking 10mA, sourcing 4.5mA), or a Schmitt-trigger logic input. Each input has an individually selectable internal pullup resistor. Additionally, transition detection allows seven ports (P24 through P30) to be monitored in any maskable combination for changes in their logic status. A detected transition is flagged through a status register bit, as well as an interrupt pin (port P31), if desired.

The *Typical Operating Circuit* shows two MAX6956s working together controlling three monocolor 16-seg-

ment-plus-DP displays, with five ports left available for GPIO (P26–P31 of U2).

The port configuration registers set the 28 ports, P4 to P31, individually as either LED drivers or GPIO. A pair of bits in registers 0x09 through 0x0F sets each port's configuration (Tables 1 and 2).

The 36-pin MAX6956AAX has 28 ports, P4 to P31. The 28-pin MAX6956ANI and MAX6956AAI make only 20 ports available, P12 to P31. The eight unused ports should be configured as outputs on power-up by writing 0x55 to registers 0x09 and 0x0A. If this is not done, the eight unused ports remain as floating inputs and quiescent supply current rises, although there is no damage to the part.

Register Control of I/O Ports and LEDs Across Multiple Drivers

The MAX6956 offers 20 or 28 I/O ports, depending on package choice. These can be applied to a variety of combinations of different display types, for example: seven, 7-segment digits (Figure 7). This example requires two MAX6956s, with one digit being driven by both devices, half by one MAX6956, half by the other (digit 4 in this example). The two drivers are static, and therefore do not need to be synchronized. The MAX6956 sees CA digits as multiple discrete LEDs. To

Table 1. Port Configuration Map

REGISTER	ADDRESS	REGISTER DATA													
REGISTER	CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0						
Port Configuration for P7, P6, P5, P4	0x09	P7		P6		Р	5	Р	4						
Port Configuration for P11, P10, P9, P8	0x0A	P11		P11 P10		P10		P10 P9		P	8				
Port Configuration for P15, P14, P13, P12	0x0B	P15		P15 P14		4 P13		P12							
Port Configuration for P19, P18, P17, P16	0x0C	P	P19 P18		P18		17	P	16						
Port Configuration for P23, P22, P21, P20	0x0D	P2	P23 P2		P23 P22		P23 P22 P21		P22		21	P2	20		
Port Configuration for P27, P26, P25, P24	0x0E	P27		P27		P27		P27		Pź	26	Pź	25	P2	24
Port Configuration for P31, P30, P29, P28	0x0F	P3	P31 P30 F		P2	29	P2	28							

Table 2. Port Configuration Matrix

MODE	FUNCTION	PORT REGISTER	PIN BEHAVIOR	ADDRESS CODE (HEX)	CONFIG	ORT URATION PAIR	
					UPPER	LOWER	
		Written Low	High impedance				
Output	LED Segment Driver	LED Segment Driver Written High		Open-drain current sink, with sink current (up to 24mA) determined by the appropriate current register	0x09 to 0x0F	0	0
Output	GPIO Output	Written Low	Active-low logic output	0x09 to 0x0F	0	1	
Output		Written High	Active-high logic output		0		
Input	GPIO Input Without Pullup	Reading Port	Schmitt logic input	0x09 to 0x0F	1	0	
Input	GPIO Input with Pullup	Reading Port	Schmitt logic input with pullup	0x09 to 0x0F	1	1	

Note: The logic is inverted between the two output modes; a high makes the output go low in LED segment driver mode (0x00) to turn that segment on; in GPIO output mode (0x01), a high makes the output go high.

simplify access to displays that overlap two MAX6956s, the MAX6956 provides four virtual ports, P0 through P3. To update an overlapping digit, send the same code twice as an eight-port write, once to P28 through P35 of the first driver, and again to P0 through P7 of the second driver. The first driver ignores the last 4 bits and the second driver ignores the first 4 bits.

Two addressing methods are available. Any single port (bit) can be written (set/cleared) at once; or, any sequence of eight ports can be written (set/cleared) in any combination at once. There are no boundaries; it is equally acceptable to write P0 through P7, P1 through P8, or P31 through P38 (P32 through P38 are nonexistent, so the instructions to these bits are ignored).

Using 8-bit control, a seven-segment digit with a decimal point can be updated in a single byte-write, a 14segment digit with DP can be updated in two byte-writes, and 16-segment digits with DP can be updated in two byte-writes plus a bit write. Also, discrete LEDs and GPIO port bits can be lit and controlled individually without affecting other ports.

Shutdown

When the MAX6956 is in shutdown mode, all ports are forced to inputs, and the pullup current sources are turned off. Data in the port and control registers remain unaltered, so port configuration and output levels are restored when the MAX6956 is taken out of shutdown. The display driver can still be programmed while in shutdown mode. For minimum supply current in shutdown mode, logic inputs should be at GND or V+ potential. Shutdown mode is exited by setting the S bit in the configuration register (Table 8). Shutdown mode is temporarily overridden by the display test function.

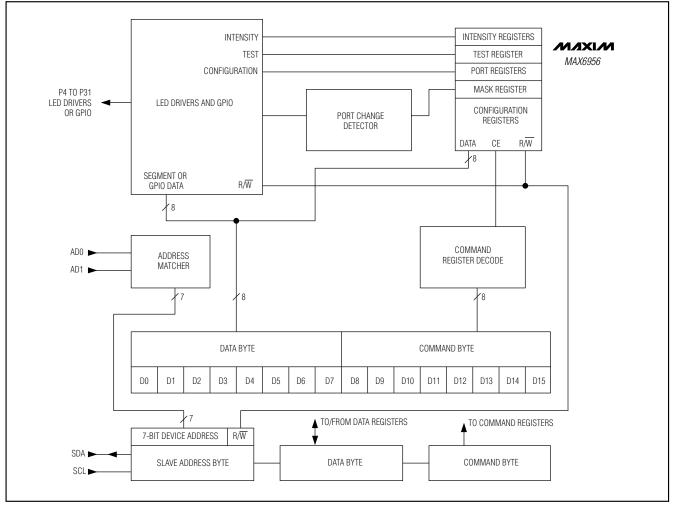


Figure 1. MAX6956 Functional Diagram

Serial Interface

Serial Addressing

The MAX6956 operates as a slave that sends and receives data through an I²C-compatible 2-wire interface. The interface uses a serial data line (SDA) and a serial clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master (typically a microcontroller) initiates all data transfers to and from the MAX6956, and generates the SCL clock that synchronizes the data transfer (Figure 2).

The MAX6956 SDA line operates as both an input and an open-drain output. A pullup resistor, typically 4.7k Ω , is required on SDA. The MAX6956 SCL line operates only as an input. A pullup resistor, typically 4.7k Ω , is required on SCL if there are multiple masters on the 2-

wire interface, or if the master in a single-master system has an open-drain SCL output.

Each transmission consists of a START condition (Figure 3) sent by a master, followed by the MAX6956 7-bit slave address plus R/W bit (Figure 6), a register address byte, one or more data bytes, and finally a STOP condition (Figure 3).

Start and Stop Conditions

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it issues a STOP (P) condition by transitioning SDA from low to

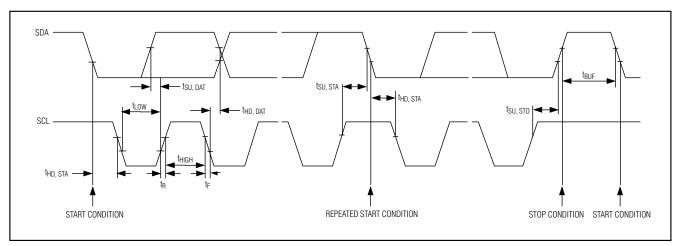


Figure 2. 2-Wire Serial Interface Timing Details

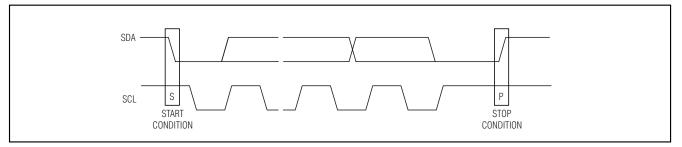


Figure 3. Standard Stop Conditions

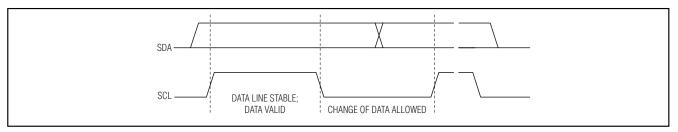


Figure 4. Bit Transfer

high while SCL is high. The bus is then free for another transmission (Figure 3).

Bit Transfer

One data bit is transferred during each clock pulse. The data on SDA must remain stable while SCL is high (Figure 4).

Acknowledge

The acknowledge bit is a clocked 9th bit, which the recipient uses to handshake receipt of each byte of

data (Figure 5). Thus, each byte transferred effectively requires 9 bits. The master generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, such that the SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the MAX6956, the MAX6956 generates the acknowledge bit because the MAX6956 is the recipient. When the MAX6956 is transmitting to the master, the master generates the acknowledge bit because the master is the recipient.

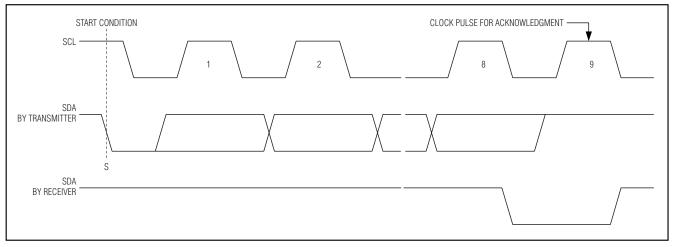


Figure 5. Acknowledge

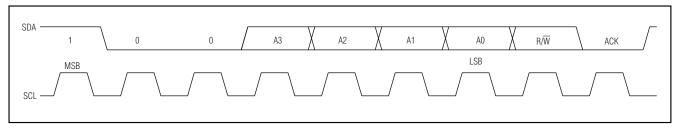


Figure 6. Slave Address

Slave Address

The MAX6956 has a 7-bit-long slave address (Figure 6). The eighth bit following the 7-bit slave address is the R/\overline{W} bit. It is low for a write command, high for a read command.

The first 3 bits (MSBs) of the MAX6956 slave address are always 100. Slave address bits A3, A2, A1, and A0 are selected by address inputs, AD1 and AD0. These two input pins may be connected to GND, V+, SDA, or SCL. The MAX6956 has 16 possible slave addresses (Table 3) and therefore, a maximum of 16 MAX6956 devices may share the same interface.

Message Format for Writing the MAX6956

A write to the MAX6956 comprises the transmission of the MAX6956's slave address with the R/W bit set to zero, followed by at least 1 byte of information. The first byte of information is the command byte. The command byte determines which register of the MAX6956 is to be written by the next byte, if received. If a STOP condition is detected after the command byte is received, then the MAX6956 takes no further action (Figure 8) beyond storing the command byte.

Any bytes received after the command byte are data bytes. The first data byte goes into the internal register of the MAX6956 selected by the command byte (Figure 9). If multiple data bytes are transmitted before a STOP condition is detected, these bytes are generally stored in subsequent MAX6956 internal registers because the command byte address generally autoincrements (Table 4).

Message Format for Reading

The MAX6956 is read using the MAX6956's internally stored command byte as address pointer, the same way the stored command byte is used as address pointer for a write. The pointer generally autoincrements after each data byte is read using the same rules as for a write (Table 4). Thus, a read is initiated by first configuring the MAX6956's command byte by performing a write (Figure 8). The master can now read n consecutive bytes from the MAX6956, with the first data byte being read from the register addressed by the initialized command byte. When performing read-after-

9

7-SEGMENT DIGIT 1 7-SEGMENT DIGIT 2 7-SEGMENT DIGIT 3 7-SEGMENT DIGIT 4 VIRTUAL SEGMENTS P0 P1 P2 P3 P4 P5 P6 P7 P8 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P9 P10 P11 V+ 7-SEGMENT DIGIT 5 7-SEGMENT DIGIT 6 7-SEGMENT DIGIT 7 VIRTUAL SEGMENTS P0 P1 P2 P3 P4 P5 P6 P8 P9 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P29 P30 P31 P7 P26

Figure 7. Two MAX6956s Controlling Seven 7-Segment Displays

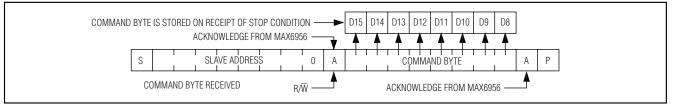


Figure 8. Command Byte Received

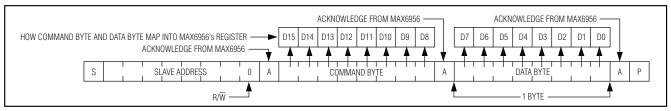


Figure 9. Command and Single Data Byte Received

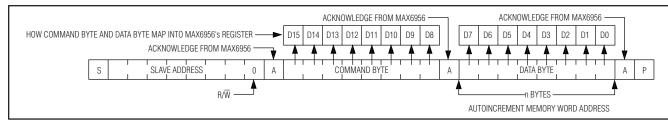


Figure 10. n Data Bytes Received

Table 3. MAX6956 Address Map

	PIN NECTION		DEVICE ADDRESS						
AD1	AD0	A6	A5	A4	A3	A2	A1	A0	
GND	GND	1	0	0	0	0	0	0	
GND	V+	1	0	0	0	0	0	1	
GND	SDA	1	0	0	0	0	1	0	
GND	SCL	1	0	0	0	0	1	1	
V+	GND	1	0	0	0	1	0	0	
V+	V+	1	0	0	0	1	0	1	
V+	SDA	1	0	0	0	1	1	0	
V+	SCL	1	0	0	0	1	1	1	
SDA	GND	1	0	0	1	0	0	0	
SDA	V+	1	0	0	1	0	0	1	
SDA	SDA	1	0	0	1	0	1	0	
SDA	SCL	1	0	0	1	0	1	1	
SCL	GND	1	0	0	1	1	0	0	
SCL	V+	1	0	0	1	1	0	1	
SCL	SDA	1	0	0	1	1	1	0	
SCL	SCL	1	0	0	1	1	1	1	

Table 4. Autoincrement Rules

COMMAND BYTE ADDRESS RANGE	AUTOINCREMENT BEHAVIOR
x0000000 to x1111110	Command address autoincrements after byte read or written
x111111	Command address remains at x1111111 after byte written or read

write verification, remember to reset the command byte's address because the stored control byte address generally has been autoincremented after the write (Table 4). Table 5 is the register address map.

Operation with Multiple Masters

If the MAX6956 is operated on a 2-wire interface with multiple masters, a master reading the MAX6956 should use a repeated start between the write, which

sets the MAX6956's address pointer, and the read(s) that takes the data from the location(s). This is because it is possible for master 2 to take over the bus after master 1 has set up the MAX6956's address pointer but before master 1 has read the data. If master 2 subsequently changes, the MAX6956's address pointer, then master 1's delayed read may be from an unexpected location.

Table 5. Register Address Map

	COMMAND ADDRESS								
REGISTER	D15	D14	D13	D12	D11	D10	D9	D8	CODE
No-Op	Х	0	0	0	0	0	0	0	0x00
Global Current	Х	0	0	0	0	0	1	0	0x02
Configuration	Х	0	0	0	0	1	0	0	0x04
Transition Detect Mask	Х	0	0	0	0	1	1	0	0x06
Display Test	Х	0	0	0	0	1	1	1	0x07
Port Configuration P7, P6, P5, P4	Х	0	0	0	1	0	0	1	0x09
Port Configuration P11, P10, P9, P8	Х	0	0	0	1	0	1	0	0x0A
Port Configuration P15, P14, P13, P12	Х	0	0	0	1	0	1	1	0x0B
Port Configuration P19, P18, P17, P16	Х	0	0	0	1	1	0	0	0x0C
Port Configuration P23, P22, P21, P20	Х	0	0	0	1	1	0	1	0x0D
Port Configuration P27, P26, P25, P24	Х	0	0	0	1	1	1	0	0x0E
Port Configuration P31, P30, P29, P28	Х	0	0	0	1	1	1	1	0x0F
Current054	Х	0	0	1	0	0	1	0	0x12
Current076	Х	0	0	1	0	0	1	1	0x13
Current098	Х	0	0	1	0	1	0	0	0x14
Current0BA	Х	0	0	1	0	1	0	1	0x15
Current0DC	Х	0	0	1	0	1	1	0	0x16
Current0FE	Х	0	0	1	0	1	1	1	0x17
Current110	Х	0	0	1	1	0	0	0	0x18
Current132	Х	0	0	1	1	0	0	1	0x19
Current154	Х	0	0	1	1	0	1	0	0x1A
Current176	Х	0	0	1	1	0	1	1	0x1B
Current198	Х	0	0	1	1	1	0	0	0x1C
Current1BA	Х	0	0	1	1	1	0	1	0x1D
Current1DC	Х	0	0	1	1	1	1	0	0x1E
Current1FE	Х	0	0	1	1	1	1	1	0x1F
Port 0 only (virtual port, no action)	Х	0	1	0	0	0	0	0	0x20
Port 1 only (virtual port, no action)	Х	0	1	0	0	0	0	1	0x21
Port 2 only (virtual port, no action)	Х	0	1	0	0	0	1	0	0x22
Port 3 only (virtual port, no action)	Х	0	1	0	0	0	1	1	0x23
Port 4 only	Х	0	1	0	0	1	0	0	0x24
Port 5 only	Х	0	1	0	0	1	0	1	0x25
Port 6 only	Х	0	1	0	0	1	1	0	0x26
Port 7 only	Х	0	1	0	0	1	1	1	0x27
Port 8 only	Х	0	1	0	1	0	0	0	0x28
Port 9 only	Х	0	1	0	1	0	0	1	0x29
Port 10 only	Х	0	1	0	1	0	1	0	0x2A

Table 5. Register Address Map (continued)

REGISTER			CO	MMANE	ADDRE	SS			HEX
nEGISTEN	D15	D14	D13	D12	D11	D10	D9	D8	CODE
Port 11 only	Х	0	1	0	1	0	1	1	0x2B
Port 12 only	Х	0	1	0	1	1	0	0	0x2C
Port 13 only	Х	0	1	0	1	1	0	1	0x2D
Port 14 only	Х	0	1	0	1	1	1	0	0x2E
Port 15 only	Х	0	1	0	1	1	1	1	0x2F
Port 16 only	Х	0	1	1	0	0	0	0	0x30
Port 17 only	Х	0	1	1	0	0	0	1	0x31
Port 18 only	Х	0	1	1	0	0	1	0	0x32
Port 19 only	Х	0	1	1	0	0	1	1	0x33
Port 20 only	Х	0	1	1	0	1	0	0	0x34
Port 21 only	Х	0	1	1	0	1	0	1	0x35
Port 22 only	Х	0	1	1	0	1	1	0	0x36
Port 23 only	Х	0	1	1	0	1	1	1	0x37
Port 24 only	Х	0	1	1	1	0	0	0	0x38
Port 25 only	Х	0	1	1	1	0	0	1	0x39
Port 26 only	Х	0	1	1	1	0	1	0	0x3A
Port 27 only	Х	0	1	1	1	0	1	1	0x3B
Port 28 only	Х	0	1	1	1	1	0	0	0x3C
Port 29 only	Х	0	1	1	1	1	0	1	0x3D
Port 30 only	Х	0	1	1	1	1	1	0	0x3E
Port 31 only	Х	0	1	1	1	1	1	1	0x3F
4 ports 4–7 (data bits D0–D3)	Х	1	0	0	0	0	0	0	0x40
5 ports 4–8 (data bits D0–D4)	Х	1	0	0	0	0	0	1	0x41
6 ports 4–9 (data bits D0–D5)	Х	1	0	0	0	0	1	0	0x42
7 ports 4–10 (data bits D0–D6)	Х	1	0	0	0	0	1	1	0x43
8 ports 4–11	Х	1	0	0	0	1	0	0	0x44
8 ports 5–12	Х	1	0	0	0	1	0	1	0x45
8 ports 6–13	Х	1	0	0	0	1	1	0	0x46
8 ports 7–14	Х	1	0	0	0	1	1	1	0x47
8 ports 8–15	Х	1	0	0	1	0	0	0	0x48
8 ports 9–16	Х	1	0	0	1	0	0	1	0x49
8 ports 10–17	Х	1	0	0	1	0	1	0	0x4A
8 ports 11–18	Х	1	0	0	1	0	1	1	0x4B
8 ports 12–19	Х	1	0	0	1	1	0	0	0x4C
8 ports 13–20	Х	1	0	0	1	1	0	1	0x4D
8 ports 14–21	Х	1	0	0	1	1	1	0	0x4E
8 ports 15–22	Х	1	0	0	1	1	1	1	0x4F

REGISTER			CO	MMANE	ADDRE	ESS			HEX
REGISTER	D15	D14	D13	D12	D11	D10	D9	D8	CODE
8 ports 16–23	Х	1	0	1	0	0	0	0	0x50
8 ports 17–24	Х	1	0	1	0	0	0	1	0x51
8 ports 18–25	Х	1	0	1	0	0	1	0	0x52
8 ports 19–26	Х	1	0	1	0	0	1	1	0x53
8 ports 20–27	Х	1	0	1	0	1	0	0	0x54
8 ports 21–28	Х	1	0	1	0	1	0	1	0x55
8 ports 22–29	Х	1	0	1	0	1	1	0	0x56
8 ports 23–30	Х	1	0	1	0	1	1	1	0x57
8 ports 24–31	Х	1	0	1	1	0	0	0	0x58
7 ports 25–31	Х	1	0	1	1	0	0	1	0x59
6 ports 26–31	Х	1	0	1	1	0	1	0	0x5A
5 ports 27–31	Х	1	0	1	1	0	1	1	0x5B
4 ports 28–31	Х	1	0	1	1	1	0	0	0x5C
3 ports 29–31	Х	1	0	1	1	1	0	1	0x5D
2 ports 30–31	Х	1	0	1	1	1	1	0	0x5E
1 port 31 only	Х	1	0	1	1	1	1	1	0x5F

Table 5. Register Address Map (continued)

Note: Unused bits read as 0.

Command Address Autoincrementing

Address autoincrementing allows the MAX6956 to be configured with the shortest number of transmissions by minimizing the number of times the command address needs to be sent. The command address stored in the MAX6956 generally increments after each data byte is written or read (Table 4).

Initial Power-Up

On initial power-up, all control registers are reset, the current registers are set to minimum value, and the MAX6956 enters shutdown mode (Table 6).

LED Current Control

LED segment drive current can be set either globally or individually. Global control simplifies the operation when all LEDs are set to the same current level, because writing just the global current register sets the current for all ports configured as LED segment drivers. It is also possible to individually control the current drive of each LED segment driver. Individual/global brightness control is selected by setting the configuration register I bit (Table 9). The global current register (0x02) data are then ignored, and segment currents are set using register addresses 0x12 through 0x1F (Tables 12, 13, and 14). Each segment is controlled by a nibble of one of the 16 current registers.

Transition (Port Data Change) Detection

Port transition detection allows seven maskable ports P24 through P30 to be continuously monitored for changes in their logic status (Figure 11). Enable transition detection by setting the M bit in the configuration register (Table 10) after setting the mask register. If port 31 is configured as an output (Tables 1 and 2), then P31 automatically becomes an interrupt request (IRQ) output to flag detected transitions. Port 31 can be configured and used as a general-purpose input port instead if not being required as the IRQ output.

The mask register determines which of the seven ports P24 through P30 are monitored (Table 15). Set the appropriate mask bit to enable that port for transition detect. Clear the mask bit if transitions on that port are to be ignored by the transition detection logic. Ports are monitored regardless of their I/O configuration, both input and output.

The MAX6956 maintains an internal 7-bit snapshot register to hold the comparison copy of the logic states of ports P24 through P30. The snapshot register is updated with the condition of P24 through P31 whenever the

Table 6. Power-Up Configuration

REGISTER FUNCTION	POWER-UP CONDITION	ADDRESS CODE			RE	GIST	ER DA	TA		
FUNCTION		(HEX)	D7	D6	D5	D4	D3	D2	D1	D0
Port Register Bits 4 to 31	LED Off; GPIO Output Low	0x24 to 0x3F	х	х	х	х	х	х	х	0
Global Current	1/16 (minimum on)	0x02	х	Х	х	х	0	0	0	0
Configuration Register	Shutdown Enabled Current Control = Global Transition Detection Disabled	0x04	0	0	х	х	х	х	х	0
Input Mask Register	All Clear (Masked Off)	0x06	х	0	0	0	0	0	0	0
Display Test	Normal Operation	0x07	Х	Х	Х	Х	Х	Х	Х	0
Port Configuration	P7, P6, P5, P4: GPIO Inputs Without Pullup	0x09	1	0	1	0	1	0	1	0
Port Configuration	P11, P10, P9, P8: GPIO Inputs Without Pullup	0x0A	1	0	1	0	1	0	1	0
Port Configuration	P15, P14, P13, P12: GPIO Inputs Without Pullup	0x0B	1	0	1	0	1	0	1	0
Port Configuration	P19, P18, P17, P16: GPIO Inputs Without Pullup	0x0C	1	0	1	0	1	0	1	0
Port Configuration	P23, P22, P21, P20: GPIO Inputs Without Pullup	0x0D	1	0	1	0	1	0	1	0
Port Configuration	P27, P26, P25, P24: GPIO Inputs Without Pullup	0x0E	1	0	1	0	1	0	1	0
Port Configuration	P31, P30, P29, P28: GPIO Inputs Without Pullup	0x0F	1	0	1	0	1	0	1	0
Current054	1/16 (minimum on)	0x12	0	0	0	0	0	0	0	0
Current076	1/16 (minimum on)	0x13	0	0	0	0	0	0	0	0
Current098	1/16 (minimum on)	0x14	0	0	0	0	0	0	0	0
Current0BA	1/16 (minimum on)	0x15	0	0	0	0	0	0	0	0
Current0DC	1/16 (minimum on)	0x16	0	0	0	0	0	0	0	0
Current0FE	1/16 (minimum on)	0x17	0	0	0	0	0	0	0	0
Current110	1/16 (minimum on)	0x18	0	0	0	0	0	0	0	0
Current132	1/16 (minimum on)	0x19	0	0	0	0	0	0	0	0
Current154	1/16 (minimum on)	0x1A	0	0	0	0	0	0	0	0
Current176	1/16 (minimum on)	0x1B	0	0	0	0	0	0	0	0
Current198	1/16 (minimum on)	0x1C	0	0	0	0	0	0	0	0
Current1BA	1/16 (minimum on)	0x1D	0	0	0	0	0	0	0	0
Current1DC	1/16 (minimum on)	0x1E	0	0	0	0	0	0	0	0
Current1FE	1/16 (minimum on)	0x1F	0	0	0	0	0	0	0	0

X = unused bits; if read, zero results.

MAX6956

Table 7. Configuration Register Format

FUNCTION	ADDRESS CODE				REGIST	ER DATA			
FUNCTION	(HEX)	D7	D6	D5	D4	D3	D2	D1	D0
Configuration Register	0x04	М	I	Х	Х	Х	Х	Х	S

Table 8. Shutdown Control (S Data Bit D0) Format

FUNCTION	ADDRESS CODE				REGIST	ER DATA			
FUNCTION	(HEX)	D7	D6	D5	D4	D3	D2	D1	D0
Shutdown	0x04	М	I	Х	Х	Х	Х	Х	0
Normal Operation	0x04	М	I	Х	Х	Х	Х	Х	1

Table 9. Global Current Control (I Data Bit D6) Format

FUNCTION	ADDRESS CODE (HEX)	REGISTER DATA									
	0000 (D7	D6	D5	D4	D3	D2	D1	D0		
Global Constant-current limits for all digits are controlled by one setting in the Global Current register, 0x02	0x04	М	0	х	х	х	х	х	S		
Individual Segment Constant-current limit for each digit is individually controlled by the settings in the Current054 through Current1FE registers	0x04	М	1	х	х	x	х	х	S		

Table 10. Transition Detection Control (M-Data Bit D7) Format

FUNCTION	ADDRESS CODE				REGISTE	R DATA			
FUNCTION	(HEX)	D7	D6	D5	D4	D3	D2	D1	D0
Disabled	0x04	0	-	Х	Х	Х	Х	Х	S
Enabled	0x04	1	-	Х	Х	Х	Х	Х	S

configuration register is written with the M bit set. The update action occurs regardless of the previous state of the M bit so that it is not necessary to clear the M bit and then set it again to update the snapshot register.

When the data change detection bit is set, the MAX6956 continuously compares the snapshot register against the states of P24 through P31. When a difference occurs, the IRQ bit (mask register bit D7) is set and IRQ port P31 goes high if it is configured as an output.

The IRQ bit and IRQ output remain set until the mask register is next read or written, so if the IRQ is set, then

the mask register reads with bit D7 set. Writing the mask register clears the IRQ bit and resets the IRQ output, regardless of the value of bit D7 written.

Display Test Register

Display test mode turns on all ports configured as LED drivers by overriding, but not altering, all controls and port registers, except the port configuration register (Table 16). Only ports configured as LED drivers are affected. Ports configured as GPIO push-pull outputs do not change state. In display test mode, each port's

LED DRIVE FRACTION	TYPICAL SEGMENT CURRENT (mA)	ADDRESS CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	HEX CODE
1/16	1.5	0x02	Х	Х	Х	Х	0	0	0	0	0xX0
2/16	3	0x02	Х	Х	Х	Х	0	0	0	1	0xX1
3/16	4.5	0x02	Х	Х	Х	Х	0	0	1	0	0xX2
4/16	6	0x02	Х	Х	Х	Х	0	0	1	1	0xX3
5/16	7.5	0x02	Х	Х	Х	Х	0	1	0	0	0xX4
6/16	9	0x02	Х	Х	Х	Х	0	1	0	1	0xX5
7/16	10.5	0x02	Х	Х	Х	Х	0	1	1	0	0xX6
8/16	12	0x02	Х	Х	Х	Х	0	1	1	1	0xX7
9/16	13.5	0x02	Х	Х	Х	Х	1	0	0	0	0xX8
10/16	15	0x02	Х	Х	Х	Х	1	0	0	1	0xX9
11/16	16.5	0x02	Х	Х	Х	Х	1	0	1	0	0xXA
12/16	18	0x02	Х	Х	Х	Х	1	0	1	1	0xXB
13/16	19.5	0x02	Х	Х	Х	Х	1	1	0	0	0xXC
14/16	21	0x02	Х	Х	Х	Х	1	1	0	1	0xXD
15/16	22.5	0x02	Х	Х	Х	Х	1	1	1	0	0xXE
16/16	24	0x02	Х	Х	Х	Х	1	1	1	1	0xXF

Table 11. Global Segment Current Register Format

X = Don't care bit.

current is temporarily set to 1/2 the maximum current limit as controlled by RISET.

Selecting External Component RISET to Set Maximum Segment Current

The MAX6956 uses an external resistor \bar{R}_{ISET} to set the maximum segment current. The recommended value, 39k Ω , sets the maximum current to 24mA, which makes the segment current adjustable from 1.5mA to 24mA in 1.5mA steps.

To set a different segment current, use the formula:

 $R_{ISET} = 936 k\Omega / I_{SEG}$

where ISEG is the desired maximum segment current.

The recommended value of RISET is $39k\Omega$.

The recommended value of RISET is the minimum allowed value, since it sets the display driver to the maximum allowed segment current. RISET can be a higher value to set the segment current to a lower maximum value where desired. The user must also ensure that the maximum current specifications of the LEDs connected to the driver are not exceeded.

The drive current for each segment can be controlled through programming either the Global Current register (Table 11) or Individual Segment Current registers (Tables 12, 13, and 14), according to the setting of the Current Control bit of the Configuration register (Table 9). These registers select the LED's constant-current drive from 16 equal fractions of the maximum segment current. The current difference between successive current steps, ISTEP, is therefore determined by the formula:

$I_{STEP} = I_{SEG} / 16$

If ISEG = 24mA, then ISTEP = 24mA / 16 = 1.5mA.

Applications Information

Driving Bicolor and Tricolor LEDs

Bicolor digits group a red and a green die together for each display element, so that the element can be lit red, green (or orange), depending on which die (or both) is lit. The MAX6956 allows each segment's current to be set individually from 1/16th (minimum current and LED intensity) to 16/16th (maximum current and LED intensity), as well as off (zero current). Thus, a bicolor (red-green) segment pair can be set to 289 color/intensity combinations. A discrete or CA tricolor

Table 12. Individual Segment Current Registers

REGISTER FUNCTION	ADDRESS CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0				
Current054 register	0x12		Segn	nent 5		Segment 4							
Current076 register	0x13		Segn	nent 7			Segn	nent 6					
Current098 register	0x14		Segn	nent 9			Segn	nent 8					
Current0BA register	0x15		Segm	ent 11			Segm	ent 10					
Current0DC register	0x16		Segm	ent 13			Segm	ent 12					
Current0FE register	0x17		Segm	ent 15		Segment 14							
Current110 register	0x18		Segm	ent 17		Segment 16							
Current132 register	0x19		Segm	ent 19			ent 18						
Current154 register	0x1A		Segm	ent 21			Segm	ent 20					
Current176 register	0x1B		Segm	ent 23			Segm	ent 22					
Current198 register	0x1C		Segm	ent 25			Segm	ent 24					
Current1BA register	0x1D		Segm	ent 27			Segm	ent 26					
Current1DC register	0x1E		Segm	ent 29		Segment 28							
Current1FE register	0x1F		Segm	ent 31		Segment 30							

Table 13. Even Individual Segment Current Format

LED DRIVE FRACTION	SEGMENT CONSTANT CURRENT WITH R _{ISET} = 39kΩ (mA)	ADDRESS CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	HEX CODE
1/16	1.5	0x12 to 0x1F					0	0	0	0	0xX0
2/16	3	0x12 to 0x1F					0	0	0	1	0xX1
3/16	4.5	0x12 to 0x1F					0	0	1	0	0xX2
4/16	6	0x12 to 0x1F					0	0	1	1	0xX3
5/16	7.5	0x12 to 0x1F					0	1	0	0	0xX4
6/16	9	0x12 to 0x1F					0	1	0	1	0xX5
7/16	10.5	0x12 to 0x1F		See Ta	ble 14		0	1	1	0	0xX6
8/16	12	0x12 to 0x1F					0	1	1	1	0xX7
9/16	13.5	0x12 to 0x1F					1	0	0	0	0xX8
10/16	15	0x12 to 0x1F					1	0	0	1	0xX9
11/16	16.5	0x12 to 0x1F					1	0	1	0	0xXA
12/16	18	0x12 to 0x1F					1	0	1	1	0xXB
13/16	19.5	0x12 to 0x1F					1	1	0	0	0xXC
14/16	21	0x12 to 0x1F					1	1	0	1	0xXD
15/16	22.5	0x12 to 0x1F					1	1	1	0	0xXE
16/16	24	0x12 to 0x1F					1	1	1	1	0xXF

MAX6956

LED DRIVE FRACTION	SEGMENT CONSTANT CURRENT WITH RISET = 39kΩ (mA)	ADDRESS CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	HEX CODE
1/16	1.5	0x12 to 0x1F	0	0	0	0					0x0X
2/16	3	0x12 to 0x1F	0	0	0	1					0x1X
3/16	4.5	0x12 to 0x1F	0	0	1	0					0x2X
4/16	6	0x12 to 0x1F	0	0	1	1]				0x3X
5/16	7.5	0x12 to 0x1F	0	1	0	0]				0x4X
6/16	9	0x12 to 0x1F	0	1	0	1					0x5X
7/16	10.5	0x12 to 0x1F	0	1	1	0]	See Ta	ble 13.		0x6X
8/16	12	0x12 to 0x1F	0	1	1	1					0x7X
9/16	13.5	0x12 to 0x1F	1	0	0	0					0x8X
10/16	15	0x12 to 0x1F	1	0	0	1					0x9X
11/16	16.5	0x12 to 0x1F	1	0	1	0					0xAX
12/16	18	0x12 to 0x1F	1	0	1	1					0xBX
13/16	19.5	0x12 to 0x1F	1	1	0	0					0xCX
14/16	21	0x12 to 0x1F	1	1	0	1]				0xDX
15/16	22.5	0x12 to 0x1F	1	1	1	0					0xEX
16/16	24	0x12 to 0x1F	1	1	1	1					0xFX

Table 14. Odd Individual Segment Current Format

(red-green-yellow or red-green-blue) segment triad can be set to 4913 color/intensity combinations.

Power Dissipation Issues

Each MAX6956 port can sink a current of 24mA into an LED with a 2.4V forward-voltage drop when operated from a supply voltage of at least 3.0V. The minimum voltage drop across the internal LED drivers is therefore (3.0V - 2.4V) = 0.6V. The MAX6956 can sink 28 x 24mA = 672mA when all outputs are operating as LED segment drivers at full current. On a 3.3V supply, a MAX6956 dissipates $(3.3V - 2.4V) \times 672mA = 0.6W$ when driving 28 of these 2.4V forward-voltage drop LEDs at full current. This dissipation is within the ratings of the 36-pin SSOP package with an ambient temperature up to +98°C. If a higher supply voltage is used or the LEDs used have a lower forward-voltage drop than 2.4V, the MAX6956 absorbs a higher voltage, and the MAX6956's power dissipation increases.

If the application requires high drive current and high supply voltage, consider adding a series resistor to each LED to drop excessive drive voltage off-chip. For

example, consider the requirement that the MAX6956 must drive LEDs with a 2.0V to 2.4V specified forwardvoltage drop, from an input supply range is 5V ±5% with a maximum LED current of 20mA. Minimum input supply voltage is 4.75V. Maximum LED series resistor value is $(4.75V - 2.4V - 0.6V)/0.020A = 87.5\Omega$. We choose $82\Omega \pm 2\%$. Worst-case resistor dissipation is at maximum toleranced resistance, i.e., $(0.020A)^2 \times (82\Omega)^2$ \times 1.02) = 34mW. The maximum MAX6956 dissipation per LED is at maximum input supply voltage, minimum toleranced resistance, minimum toleranced LED forward-voltage drop, i.e., 0.020 x (5.25V - 2.0V - (0.020A \times 82 Ω x 0.98)) = 32.86mW. Worst-case MAX6956 dissipation is 920mW driving all 28 LEDs at 20mA full current at once, which meets the 941mW dissipation ratings of the 36-pin SSOP package.

Low-Voltage Operation

The MAX6956 operates down to 2V supply voltage (although the sourcing and sinking currents are not guaranteed), providing that the MAX6956 is powered up initially to at least 2.5V to trigger the device's internal reset.

MAX6956

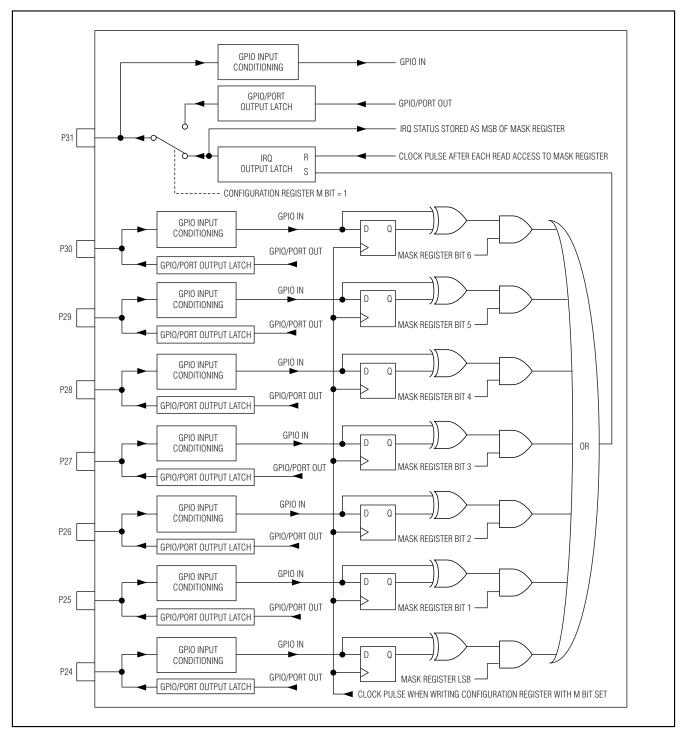
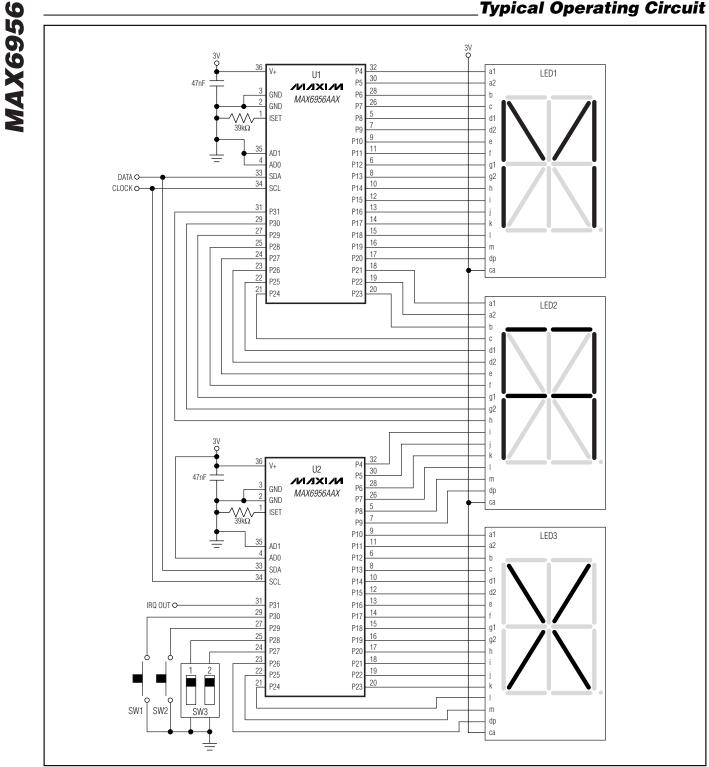


Figure 11. Maskable GPIO Ports P24 Through P31

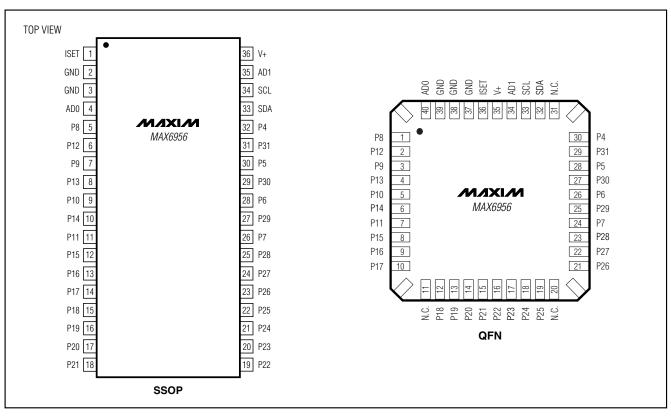
Table 15. Transition Detection Mask Register

FUNCTION	REGISTER ADDRESS	READ/			RE	GISTER D	ΑΤΑ			
FUNCTION	(HEX)	WRITE	D7	D6	D5	D4	D3	D2	D1	D0
Mask	0.400	Read	IRQ Status*	Port						
Register	0x06	Write	Unchanged	30 mask	29 mask	28 mask	27 mask	26 mask	25 mask	24 mask

*IRQ is automatically cleared after it is read.


Table 16. Display Test Register

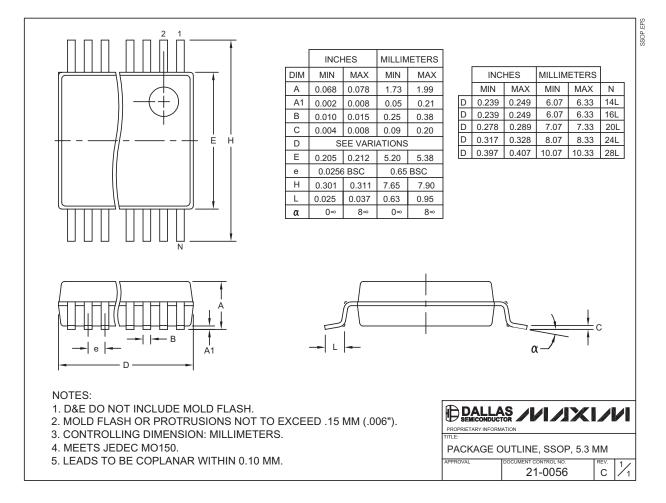
MODE	ADDRESS CODE	REGISTER DATA									
MODE	(HEX)	D7	D6	D5	D4	D3	D2	D1	D0		
Normal Operation	0x07	Х	Х	Х	Х	Х	Х	Х	0		
Display Test Mode	0x07	Х	Х	Х	Х	Х	Х	Х	1		


X = Don't care bit

Power-Supply Considerations

The MAX6956 operates with power-supply voltages of 2.5V to 5.5V. Bypass the power supply to GND with a 0.047 μ F capacitor as close to the device as possible. Add a 1 μ F capacitor if the MAX6956 is far away from the board's input bulk decoupling capacitor.

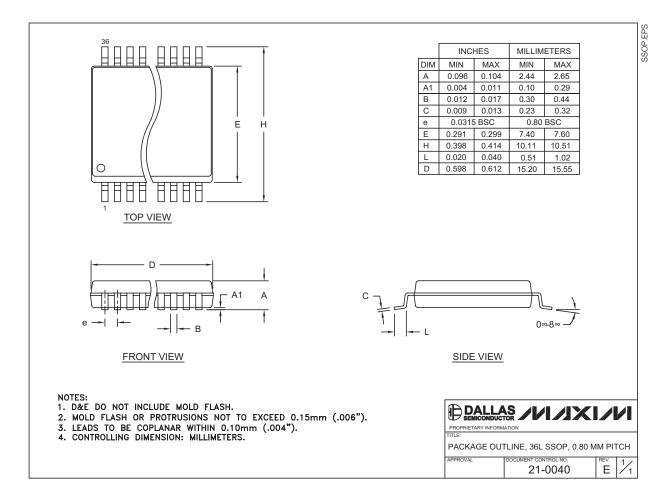
Typical Operating Circuit


Pin Configurations (continued)

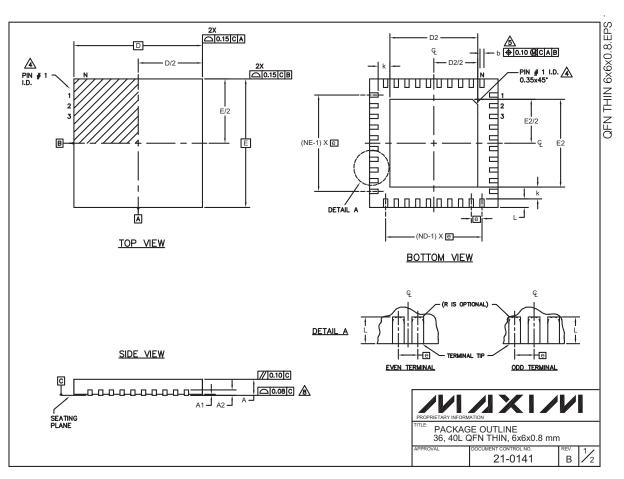
Chip Information

TRANSISTOR COUNT: 33,559 PROCESS: CMOS

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

M/XI/M


Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

M/XI/M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

	CO	MMON	DIMEN	SIONS				E	XPOSE	D PAI) VAR	RIATIO	NS	
PKG.		36L 6x6			40L 6x6			PKG.		D2			E2	
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX
Α	0.70	0.75	0.80	0.70	0.75	0.80		T3666-1	3.60	3.70	3.80	3.60	3.70	3.80
A1	0	0.02	0.05	0	0.02	0.05		T4066-1	4.00	4.10	4.20	4.00	4.10	4.20
A3	().20 REF		().20 REF									
b	0.20	0.25	0.30	0.20	0.25	0.30								
D	5.90	6.00	6.10	5.90	6.00	6.10								
E	5.90	6.00	6.10	5.90	6.00	6.10								
e k	0.25	0.50 BS0	<i>.</i>	0.25	0.50 BS	U.								
	0.25	- 0.55	- 0.65	0.25	- 0.40	- 0.50								
	0.40	36	0.00	0.00	40	0.00								
ND		9			10									
NE														
		9			10									
JEDEC		9 WJJD-1				2								
JEDEC ES: DIMENSIC ALL DIMEN N IS THE 1 THE TERM SPP-012. ZONE IND DIMENSIO FROM TEF	ISIONS OTAL N INAL #1 DETAILS CATED N b APF RMINAL	WJJD-1 TOLER/ ARE IN IUMBER I IDENTI S OF TE . THE TE PLIES TO TIP.	ANCING (MILLIME OF TERI FIER ANI RMINAL RMINAL RMINAL	TERS. A MINALS D TERM #1 IDEN #1 IDEI LIZED T	10 WJJD-2 NGLES INAL NU TIFIER VTIFIER	ASME Y14 ARE IN I JMBERIN ARE OPT MAY BE	REES. NIVENTION SHALL CONFORM TO JE IL, BUT MUST BE LOCATED WITHIN ER A MOLD OR MARKED FEATURE. ASURED BETWEEN 0.25 mm AND 0.30	THE						
JEDEC ES: DIMENSIC ALL DIMEN N IS THE 1 THE TERM SPP-012. ZONE IND DIMENSIO FROM TEF	ISIONS OTAL N INAL #1 DETAILS CATED N b APF MINAL E REFE	WJJD-1 TOLER/ ARE IN IUMBER IDENTI S OF TE . THE TE PLIES TO TIP. SR TO TH	ANCING (MILLIME OF TER FIER ANI RMINAL RMINAL METALI HE NUME	TERS. A MINALS D TERM #1 IDEN #1 IDEI LIZED T BER OF	10 WJJD-2 NGLES INAL NU TIFIER NTIFIER ERMINA	ASME Y14 ARE IN I JMBERIN ARE OPT MAY BE	EES. NVENTION SHALL CONFORM TO JE L, BUT MUST BE LOCATED WITHIN ER A MOLD OR MARKED FEATURE.	THE 0 mm						
JEDEC ES: DIMENSIC ALL DIMEN N IS THE 1 THE TERM SPP-012. ZONE IND DIMENSIC FROM TER ND AND N DEPOPUL	ISIONS OTAL N INAL #1 DETAILS CATED N b APF MINAL E REFE ATION I	WJJD-1 TOLER/ ARE IN IUMBER I IDENTI S OF TE OF TE TIP. S OF TE S FOTF S POSS	ANCING (MILLIME OF TERI FIER ANI FIER ANI RMINAL RMINAL RMINAL METALI HE NUME IBLE IN /	TERS. A MINALS D TERM #1 IDEN #1 IDEI LIZED T BER OF A SYMM	10 WJJD-2 NGLES INAL NU TIFIER TERMINA TERMINA	ASME Y14 ARE IN I JMBERIN ARE OPT MAY BE AL AND IS IALS ON L FASHIO	EES. NVENTION SHALL CONFORM TO JE L, BUT MUST BE LOCATED WITHIN ER A MOLD OR MARKED FEATURE. ASURED BETWEEN 0.25 mm AND 0.30 I D AND E SIDE RESPECTIVELY.	THE 0 mm				×		
JEDEC ES: DIMENSIC ALL DIMEN N IS THE 1 THE TERM SPP-012. ZONE IND DIMENSIC FROM TER ND AND N DEPOPUL	ISIONS OTAL N INAL #1 DETAILS CATED N b APF RMINAL E REFE ATION I RITY AF	WJJD-1 TOLERA ARE IN IUMBER IDENTI S OF TE . THE TE PLIES TO TIP. S POSS PPLIES 1	ANCING (MILLIME OF TER FIER ANI RMINAL RMIN	TERS. A MINALS D TERM #1 IDEN #1 IDEI LIZED T BER OF A SYMM EXPOSE	10 WJJD-2 NGLES INAL NU TIFIER ERMINA TERMINA ETRICA	ASME Y14 ARE IN I JMBERIN ARE OPT MAY BE AL AND IS IALS ON L FASHIO	REES. NIVENTION SHALL CONFORM TO JE IL, BUT MUST BE LOCATED WITHIN ER A MOLD OR MARKED FEATURE. ASURED BETWEEN 0.25 mm AND 0.30	THE 0 mm	RIETARY INF	ORMATIO	N			/1
JEDEC ES: DIMENSIC ALL DIMEN N IS THE 1 THE TERM SPP-012. ZONE IND DIMENSIC FROM TEF ND AND N DEPOPUL COPLANA	ISIONS OTAL N INAL #1 DETAILS CATED N b APF MINAL E REFE ATION I RITY AF	WJJD-1 TOLERA ARE IN IDENTI S OF TE . THE TE PLIES TO TIP. S POSS PPLIES TO PPLIES TO PPLIES TO PPLIES TO	ANCING (MILLIME OF TER FIER ANI RMINAL RMINAL RMINAL RMINAL RMINAL RMINAL ROTAL IBLE IN / FO THE E D JEDEC	TERS. A MINALS D TERM #1 IDEN #1 IDEN LIZED T BER OF A SYMM EXPOSE MO220	10 WJJD-2 RM TO A NGLES INAL NU TIFIER STIFIER ERMINA TERMIN ETRICA D HEAT	ASME Y14 ARE IN I JMBERIN ARE OPT MAY BE AL AND IS IALS ON L FASHIO	EES. NVENTION SHALL CONFORM TO JE L, BUT MUST BE LOCATED WITHIN ER A MOLD OR MARKED FEATURE. ASURED BETWEEN 0.25 mm AND 0.30 I D AND E SIDE RESPECTIVELY.	THE 0 mm				INE		
JEDEC ES: DIMENSIC ALL DIMEN N IS THE 1 THE TERM SPP-012. ZONE IND DIMENSIC FROM TEF ND AND N DEPOPUL COPLANA DRAWING	ISIONS OTAL N INAL #1 DETAILS CATED N b APF MINAL E REFE ATION I RITY AF	WJJD-1 TOLERA ARE IN IDENTI S OF TE . THE TE PLIES TO TIP. S POSS PPLIES TO PPLIES TO PPLIES TO PPLIES TO	ANCING (MILLIME OF TER FIER ANI RMINAL RMINAL RMINAL RMINAL RMINAL RMINAL ROTAL IBLE IN / FO THE E D JEDEC	TERS. A MINALS D TERM #1 IDEN #1 IDEN LIZED T BER OF A SYMM EXPOSE MO220	10 WJJD-2 RM TO A NGLES INAL NU TIFIER STIFIER ERMINA TERMIN ETRICA D HEAT	ASME Y14 ARE IN I JMBERIN ARE OPT MAY BE AL AND IS IALS ON L FASHIO	EES. NVENTION SHALL CONFORM TO JE L, BUT MUST BE LOCATED WITHIN ER A MOLD OR MARKED FEATURE. ASURED BETWEEN 0.25 mm AND 0.30 I D AND E SIDE RESPECTIVELY.	THE 0 mm	PACK 36, 40	AGE (L QFN		INE	x0.8 r	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2003 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

_ 27