SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

General Description
The MAX6575L/H is a low-cost, low-current temperature sensor with a single-wire digital interface. It features accuracy of $\pm 3^{\circ} \mathrm{C}$ at $+25^{\circ} \mathrm{C}, \pm 4.5^{\circ} \mathrm{C}$ at $+85^{\circ} \mathrm{C}$, and $\pm 5^{\circ} \mathrm{C}$ at $+125^{\circ} \mathrm{C}$. The MAX6575L/H is a monostable, externally triggered temperature sensor that allows a microprocessor $(\mu \mathrm{P})$ to interface with up to eight temperature sensors using a single control line. Temperatures are sensed by measuring the time delay between the falling edge of the external triggering pulse and the falling edge of the subsequent pulse delays reported from the devices. Different sensors on the same I/O line use different timeout multipliers to avoid overlapping signals.

The MAX6575L/H features eight different timeout multipliers; these are selectable by using the two time-select pins on each device and choosing the "L" or "H" version. The "L" version provides four delay ranges less than 50 ms . The "H" version provides four delay ranges greater than 50 ms . The MAX6575L/H is available in a space-saving 6-pin SOT23 package.

Applications

Critical $\mu \mathrm{P}$ and $\mu \mathrm{C}$ Temperature Monitoring
Portable Battery-Powered Equipment
Cell Phones
Battery Packs
Hard Drives/Tape Drives
Networking and Telecom Equipment
Medical Equipment
Automotive

\quad Features
Simple Single-Wire Interface to $\mu \mathrm{P}$ or $\mu \mathrm{C}$
Multidrop up to Eight Sensors on One Wire
$\pm 0.8^{\circ} \mathrm{C}$ Accuracy at $+25^{\circ} \mathrm{C}\left(\pm 3^{\circ} \mathrm{C}\right.$ max $)$
Operates from +2.7 V to +5.5 V Supply Voltage
Low $150 \mu \mathrm{~A}$ (typ) Supply Current
Standard Operating Temperature Range:
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Small 6-Pin SOT23 Package

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP MARK
MAX6575LZUT	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23	AABG
MAX6575HZUT	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT 23	AABH

Selector Guide	
PART	TIMEOUT MULTIPLIERS $\left(\mu \mathrm{s} /{ }^{\circ} \mathrm{K}\right)$
MAX6575L	$5,20,40,80$
MAX6575H	$160,320,480,640$

Pin Configurations appear at end of data sheet.

Typical Operating Circuit

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (with respect to GND)
\qquad
VDD.
TSO . 3 V to +6 V

I/O. -0.3 V to +6 V
Input/Output Current, All Pins $\pm 20 \mathrm{~mA}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V} D \mathrm{DD}=+5 \mathrm{~V}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
VDD Range	VDD			2.7		5.5	V
Supply Current	IDD	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		150	250	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			400	
Temperature Sensor Error (Note 1)		$\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$		-7.5	± 1.1	+7.5	${ }^{\circ} \mathrm{C}$
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		-5.5	± 0.9	+5.5	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-3.0	± 0.8	+3.0	
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		-4.5	± 0.5	+4.5	
		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		-5.0	± 0.5	+5.0	
Output Pulse Delay	tD1	MAX6575L, T (temp) in ${ }^{\circ} \mathrm{K}$, Figure 1	$\mathrm{V}_{\mathrm{TS} 1}=\mathrm{GND}, \mathrm{V}_{\text {TS0 }}=\mathrm{GND}$		5 T		$\mu \mathrm{s}$
	tD2		$\mathrm{V}_{\text {TS1 }}=\mathrm{GND}, \mathrm{V}_{\text {TS }}=\mathrm{V}_{\text {DD }}$		20 T		
	tD3		$\mathrm{V}_{\text {TS1 }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {TS0 }}=\mathrm{GND}$		40T		
	tD4		$\mathrm{V}_{\text {TS } 1}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {TS0 }}=\mathrm{V}_{\mathrm{DD}}$		80T		
	tD5	MAX6575H, T (temp) in ${ }^{\circ} \mathrm{K}$, Figure 1	$\mathrm{V}_{\text {TS } 1}=\mathrm{GND}$, $\mathrm{V}_{\text {TS0 }}=\mathrm{GND}$	160T			
	tD6		$\mathrm{V}_{\mathrm{TS} 1}=\mathrm{GND}, \mathrm{V}_{\text {TS0 }}=\mathrm{V}_{\mathrm{DD}}$		320 T		
	tD7		$\mathrm{V}_{\text {TS }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {TS0 }}=\mathrm{GND}$		480T		
	tD8		$\mathrm{V}_{\mathrm{TS} 1}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{TS} 0}=\mathrm{V}_{\mathrm{DD}}$		640T		
Output Pulse Low Time	tL1-8	Figure 1		5 T			$\mu \mathrm{s}$
Reset Pulse Width (Note 2)	treset	Figure 1		4.6		16.0	ms
Setup Time	tSETUP	Figure 1		10			$\mu \mathrm{s}$
Start Pulse (Note 3)	tstart	Figure 1, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5			$\mu \mathrm{s}$
Delay Time from Trigger to Ready (Note 4)	tready	Figure 1		520			ms
Glitch Immunity on I/O Input					500		ns
Time-Select Pin Logic Levels	VIL					0.8	V
	VIH			2.3			
I/O Output Voltage Low	VOL	$\mathrm{V}_{\mathrm{DD}}>4.5 \mathrm{~V}, \mathrm{ISINK}=3.2 \mathrm{~mA}$				0.4	V
		VDD $>2.7 \mathrm{~V}, \mathrm{ISINK}=1.2 \mathrm{~mA}$				0.3	
I/O Input Voltage Low	VIL					0.8	V
I/O Input Voltage High	V_{IH}			2.3			V

Note 1: See Temperature Accuracy histograms in Typical Operating Characteristics.
Note 2: Guaranteed by design. Not production tested.
Note 3: Limit maximum start pulse at 1 ms to avoid timing overlap.
Note 4: If no reset pulse is applied.

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN	NAME	
1	VUNCTION	
2	GND	Positive Supply Voltage
3	N.C.	No Connect. Connect pin to GND or leave open.
4,5	TS0, TS1	Time-Select Pins. Set the time delay factor by connecting TS1 and TSO to either VDD or GND. See Table 1.
6	I/O	Bidirectional Interface Pin. A time delay between when the part is initiated externally by pulling I/O low and when the part subsequently pulls I/O low, is proportional to absolute temperature (${ }^{\circ} \mathrm{K}$).

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

Detailed Description

The MAX6575L/H low-cost, low-current (150 $\mu \mathrm{A}$ typ) temperature sensor is ideal for interfacing with microcontrollers or microprocessors. The MAX6575L/H is a monostable, externally triggered temperature sensor that uses a Temp \rightarrow Delay conversion to communicate with a $\mu \mathrm{P}$ over a single I/O line. Time-select pins (TS1, TS0) permit the internal temperature-controlled oscillator (TCO) to be scaled by four preset timeout multipliers, allowing eight separate temperature sensors to share one I/O line. Different sensors on the same I/O line will use different timeout multipliers to avoid overlapping signals.

Operating the MAX6575L/H

Figure 1 illustrates the timing for the MAX6575L/H. When the device is powered up, it assumes a ready state where it awaits an external trigger at the I/O pin. The I/O pin of the MAX6575L/H has an open-drain output structure that requires a pull-up resistor to maintain the proper logic levels. Once the I/O pin is pulled low and then released, control of the I/O pin is transferred to the MAX6575L/H. The temperature conversion begins on the falling edge of the externally triggered pulse. The I/O line is pulled low at a later time. That time is determined by the device temperature and the Time Select pins (TS1, TSO). The I/O line remains low for $5 \mathrm{~T} \mu \mathrm{~s}$, where T is the temperature in degrees Kelvin. The temperature of the device is represented by the edge-to-edge delay of the externally triggered pulse and the falling edge of the subsequent pulse originating from the device. The device can be manually reset by pulling the I/O line low for more than tRESET (16ms max). The device will automatically reset after a maxi-

Table 1. Time-Select Pin Configuration

TIME-SELECT PINS		TIMEOUT MULTIPLIERS $\left(\boldsymbol{\mu} \mathbf{s} /{ }^{\circ} \mathrm{K}\right)$	
TS1	TS0	MAX6575L	MAX6575H
GND	GND	5	160
GND	VDD	20	320
VDD	GND	40	480
VDD	VDD	80	640

mum delay of 520 ms , at which point it will again be in a ready state awaiting a start pulse.
Definition of Terms:
tRESET: Time I/O must be externally pulled low to guarantee the MAX6575L/H is in a ready state awaiting external trigger. (Part will assume a ready state after 520 ms without a reset pulse.)
tsETUP: Time I/O must be high prior to a start pulse.
tSTART: Trigger pulse which starts the on-chip timing sequence on its falling edge.
tDx: Timing delay between the falling edge of the start pulse and the falling edge initiated by CHIP\#x.
tLx: I/O pulse low time ($5 \mathrm{~T} \mu \mathrm{~s}$).
tREADY: Time after falling edge of start pulse when the MAX6575L/H will reset itself and await the next external trigger.
The temperature, in degrees Celsius, may be calculated as follows:

$$
\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=\left[\operatorname{tDx}(\mu \mathrm{s}) / \text { timeout multiplier }\left(\mu \mathrm{s} /{ }^{\circ} \mathrm{K}\right)\right]-273.15^{\circ} \mathrm{K}
$$

Figure 1. Timing Diagram

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

Table 2. Allowable Temperature Differential (${ }^{\circ} \mathrm{C}$)

TIMEOUT MULTIPLIER	MAX6575L				MAX6575H			
	$\mathbf{5}$	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{8 0}$	$\mathbf{1 6 0}$	$\mathbf{3 2 0}$	$\mathbf{4 8 0}$	$\mathbf{6 4 0}$
5		>165	>165	>165	>165	>165	>165	>165
20			95.5	>165	>165	>165	>165	>165
40				132.0	>165	>165	>165	>165
80					153.5	>165	>165	>165
160						>165	>165	>165
320							70.2	>165
480								37.9
640								

Table 3. Typical Peak Noise Amplitude

PARAMETER	MAX6575L				MAX6575H			
Timeout Multiplier	5	20	40	80	160	320	480	640
Noise Amplitude $\left({ }^{\circ} \mathrm{C}\right)$	± 0.33	± 0.15	± 0.15	± 0.098	± 0.091	± 0.063	± 0.043	± 0.037

Time-Select Pins (TS1, TSO)
Table 1 shows the configuration of the Time-select pins for the MAX6575L/H. Each device allows four selectable timeout multipliers intended to prevent overlapping when multiple devices are used on the same I/O line. Tie TS1 and TS0 to either GND or VDD to select the desired temperature multiplier.
To monitor several chips on the same I/O line, different timeout multipliers should be selected using the TS1 and TSO pins. The timeout periods are then scaled so that the response times will not overlap (see Timeout Selection).

Applic ations Information

Timeout Selection

Under extreme temperature conditions, it is possible for an overlap to occur between the timeout delays of different sensors in a multidrop configuration. This overlap can occur only if the temperature differential recorded between two devices is very large. Timeout overlaps can be avoided in multidrop configurations by selecting the appropriate timeout multipliers. Table 2 illustrates the allowable temperature differential between devices when the maximum error is present on each device. Allowable temperature differentials greater than $165^{\circ} \mathrm{C}$ indicate no overlap.

For example, if the maximum temperature differential in a system is $80^{\circ} \mathrm{C}$, the only combinations of timeout multipliers that could result in timeout overlap would be a $320: 480 \mu \mathrm{~s} /{ }^{\circ} \mathrm{K}\left(70.2^{\circ} \mathrm{C}\right)$ or a $480: 640 \mu \mathrm{~s} /{ }^{\circ} \mathrm{K}\left(37.9^{\circ} \mathrm{C}\right) \mathrm{com}-$ bination. As long as these combinations of timeout multipliers are not used in the same multidrop configuration, no overlap can occur. Thus, seven MAX6575L/H parts can be used in the same multidrop configuration if the maximum temperature differential between parts is $80^{\circ} \mathrm{C}$. A similar analysis shows that four MAX6575L/H parts can be used when the maximum temperature differential extends over the entire $165^{\circ} \mathrm{C}$ range of the part.

Noise Considerations

The accuracy of the MAX6575L/H timeout delay is susceptible to noise generated both internally and externally. The effects of external noise can be minimized by placing a $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor close to the device's supply pin. Internal noise is inherent in the operation of the device and is detailed in Table 3. Internal averaging minimizes the effect of this noise when using longer timeout multipliers. The effects of this noise are included in the overall accuracy of the device as specified in the Electrical Characteristics table.

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

Figure 2. Interfacing Multiple Devices with a Microcontroller

Interfacing Multiple Devices with a Microcontroller

Figure 2 shows how to interface multiple MAX6575L/H devices with an 8051 microcontroller. The first device, T 1 , is configured for a timeout multiplier of $40 \mu \mathrm{~s} /{ }^{\circ} \mathrm{K}$, while the second device, T 2 , is configured for a timeout multiplier of $80 \mu \mathrm{~s} /{ }^{\circ} \mathrm{K}$ to avoid overlap. The microcontroller takes in temperature values from both sensors, T1 and T2, on a single port pin, P3.7. The microcontroller displays five times the temperature in degrees Celsius in binary on Port 1. A switch connected to a pull-up resistor at Port 3.5 selects which temperature is displayed: open $=\mathrm{T} 1$, closed $=\mathrm{T} 2$. Code is provided for this application as Listing 1.

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

Listing 1. 8051 Code Example

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

Listing 1. 8051 Code Example (continued)

	MOV	R0, \#TEMP1L	; get templ- low byte (40T)
	MOV	R4,\#3 ; shif	3 x for 5 x temp, div 8
	CALI	TMTOC ; Conv	ay to degrees C $\times 5$
	JNB	P3.5, DSP2	;if select low, display temp2
	MOV	A, TEMP1L	;get temperature
	CPL	A	;invert it for active low led's
	MOV	P1, A	; display this temp
DSP2 :	MOV	R0,\#TEMP2L	; get temp2- low byte (807)
	mov	R4, \#4	;shift right 4 x for 5 x temp, div 16
	CALL	тмTOC	; Convert delay to degrees C x 5
	JB	P3.5,DSP1	;if select high, display templ above
	MOV	A, TEMP2L	; get temperature
	CPL	A	; invert it for active low led's
	MOV	P1, A	; display this temp
; done			
;wait for 600 ms and do it again DSP1: MOV D3,\#60			
DLL1:	MOV	D2,\#100	
DLL2 :	MOV	D1,\#50	;inner loop
DLLLP:	DJNZ	D1, DLLLP	; loop 100 us
	DJNZ	D2,DLL2	; loop 10 ms
	DJNZ	D3, DLL1	; loop 600 ms
	JMP	DOTMP	;loop forever

; subroutines
;**
;GET TEMP- main, capture timer0 to @ro after pin low edge
GTTP: JB IOPIN, GTTP ;wait for low-irq gets hangs
MOV A, THO iget high-quick
MOV B,TLO iget low- quick
CJNE A,THO,ROLL ; check rollover msb
JMP NOROL ;no
ROLL: MOV A,THO ; get high again
MOV B,TLO ;get low again
NOROL: MOV @RO,A ;stash msb
INC RO ; point next
MOV @RO,B ;stash lsb
WAITH: JNB IOPIN, WAITH ; wait for low-irq gets hangs
RET
; sub; converts uS to degrees C x 5, R4 is \# of right shifts
TMTOC: CALL SHRO ;shift right
DJNZ R4,TMTOC \quad;loop til shifted $=5 x$
MOV A,@R0 ; get x5 lsb
CLR C ; ready for subb
SUBB A, \#055H ;low byte of 273×5 - offset
MOV @RO,A ;stash back
DEC RO ; point hi
MOV A, @RO ;get hi- prop carry

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

Listing 1. 8051 Code Example (continued)

Pin Configuration
TRANSISTOR COUNT: 302

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

\qquad Package Information

NDTE:

1. ALL DIMENSIUNS ARE IN MILLIMETERS.
2. FOUT LENGTH MEASURED AT INTERCEPT PDINT BETWEEN DATUM A \& LEAD SURFACE.
3. PACKAGE DUTLINE EXCLUSIVE DF MDLD FLASH \& METAL BURR.
4. PACKAGE DUTLINE INCLUSIVE DF SDLDER PLATING.
5. PIN 1 IS LDWER LEFT PIN WHEN READING TOP MARK

FRDM LEFT TD RIGHT, (SEE EXAMPLE TDP MARK)
6. PIN 1 I.D. DDT IS 0.3 MM \varnothing MIN. LDCATED ABDVE

PIN 1.
VINXI/VI

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

NOTES

SOT Temperature Sensor with Multidrop Single-Wire Digital Interface

NOTES

