

General Description

The MAX6505-MAX6508 temperature switches have dual logic outputs that assert when the die temperature crosses their trip thresholds. Trip thresholds are factory programmed to convenient temperatures in 5°C increments.

The MAX6505/MAX6506 have an ALARM output that asserts when the temperature is above the factory-programmed thresholds (available from -40°C to +125°C). They also have a WARN output that asserts when the temperature is several degrees below the ALARM threshold. The difference between the ALARM and WARN thresholds (ΔT_{AW}) is pin selectable to +5°C, +10°C, +20°C, or +30°C. The MAX6505's logic outputs are open drain, while the MAX6506's logic outputs are push-pull.

The MAX6507 has open-drain outputs (OVER, OK), and the MAX6508 has push-pull outputs (OVER, OK), each with two factory-programmed threshold temperatures (TOVER and TUNDER) in the wide range of -40°C to +125°C. The overtemperature output asserts when the temperature is above TOVER. When the temperature is in the desired window (less than TOVER and greater than TUNDER), OK (OK) asserts.

The MAX6505-MAX6508 are accurate to ± 0.5 °C (typ), ±5.5°C (max). Operating from a +2.5V to +5.5V supply, these low-cost devices typically consume 30µA supply current and require no external components for setting trip points. The MAX6505-MAX6508 are available in a 6pin SOT23 package.

Applications

uP Temperature Monitoring in High-Speed Computers

Temperature Control

Temperature Alarms

Fan Control

Features

- ♦ ±0.5°C (typ) Threshold Accuracy Over Full **Temperature Range**
- ♦ No External Components Required
- ♦ Low Cost
- ♦ 30µA (typ) Supply Current
- **♦** Factory-Programmed Thresholds from -40°C to +125°C in 5°C Increments
- ♦ Open-Drain Outputs (MAX6505/MAX6507), Push-Pull Outputs (MAX6506/MAX6508)
- ♦ Pin Selectable +2°C, +10°C Hysteresis (MAX6507/MAX6508)
- ♦ Pin Selectable +5°C, +10°C, +20°C, +30°C TALARM - TWARN (MAX6505/MAX6506)
- ♦ SOT23-6 Package

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE
MAX6505UTT*	-40°C to +125°C	6 SOT23-6
MAX6506UTT*	-40°C to +125°C	6 SOT23-6
MAX6507UTT**	-40°C to +125°C	6 SOT23-6
MAX6508UTT**	-40°C to +125°C	6 SOT23-6

^{*}To complete the suffix information for the MAX6505/ MAX6506, add P or N for positive or negative trip temperature, and select an available trip point in degrees centigrade. For example, the MAX6505UTP055-T describes a MAX6505 in a SOT23-6 package with a +55°C threshold (Table 3). Contact the factory for pricing and availability of temperature versions (minimum order 10,000 pieces).

Selector Guide appears at end of data sheet.

Typical Operating Circuits appear at end of data sheet.

Pin Configurations

MIXIM

Maxim Integrated Products 1

^{**}To complete the suffix information for MAX6507/MAX6508, see Table 4.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to GND)0.3V to +6V	Operating Temperature Range
S1, S0 to GND0.3V to (V _{CC} + 0.3V)	(T _{MIN} to T _{MAX})40°C to +125°C
All Other Pins to GND0.3V to (V _{CC} + 0.3V)	Thermal Resistance (ΘJA)115°C/W
Input/Output Current, All Pins±20mA	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	Maximum Die Temperature+150°C
6-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW	Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

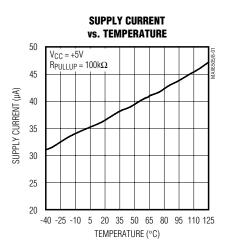
 $(V_{CC} = +2.5V \text{ to } +5.5V, R_{PULLUP} = 100 \text{k}\Omega \text{ (MAX6505/MAX6507 only), } T_{A} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}, \text{ unless otherwise noted. } Typical values are at } T_{A} = +25 ^{\circ}\text{C} \text{ and } V_{CC} = +5V, \text{ unless otherwise noted.)} \text{ (Note 1)}$

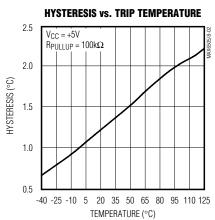
PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	Vcc			2.5		5.5	V
	laa	S0 = S1 = GND	MAX6505/ MAX6506		40	80	
Supply Current	Icc	S0 = GND	MAX6507/ MAX6508		30	60	μΑ
Tanana anak wa Thua ala alal		-40°C to 0°C		-5.5	±0.5	5.5	
Temperature Threshold Accuracy (Note 2)	ΔT_TH	0°C to +95°C		-3.5	±0.5	3.5	°C
7 Toodidoy (Note 2)		+95°C to +125°C		-4	±0.5	4	
		S1 = GND, S0 = GND			5		
Delta Temperature (TALARM -TWARNING)	ΔT_AW	S1 = GND, S0 = V _{CC}			10		°C
MAX6505/MAX6506	ΔIAW	$S1 = V_{CC}$, $S0 = GND$			20		
		S1 = V _{CC} , S0 = V _{CC}			30		
		ALARM (MAX6505/MAX6506)			2		
		WARN (MAX6505/MAX6506) OK, OVER (MAX6507/MAX6508)	$\Delta T_{AW} = 5^{\circ} C$ or $10^{\circ} C$		5		°C
Temperature Threshold Hysteresis (Note 3)	T _{HYST}		$\Delta T_{AW} = 20^{\circ} C$ or $30^{\circ} C$		10		
			S0 = GND		2		
			S0 = V _C C		10		
Logic Input Levels (S1, S0)	V _{IH}			0.8 x V _C C			V
	V _{IL}					0.8	
Output Voltage High	V	ISOURCE = 500μA, VCC	> 2.5V	0.8 x V _C C			V
(MAX6506/MAX6508)	Voh	ISOURCE = 800μA,V _{CC} > 4.5V		V _C C -1.5	_	_	V
Outout Valtage Law	\/	I _{SINK} = 3.2mA, V _{CC} > 2.	5V			0.5	
Output Voltage Low	VoL	I _{SINK} = 5mA, V _{CC} > 4.5V				0.5	- V

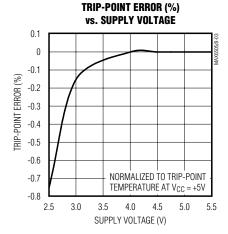
ELECTRICAL CHARACTERISTICS (continued)

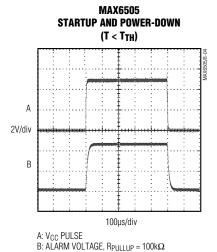
 $(V_{CC} = +2.5V \text{ to } +5.5V, R_{PULLUP} = 100 \text{k}\Omega \text{ (MAX6505/MAX6507 only)}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}, unless otherwise noted.}$ Typical values are at $T_{A} = +25 ^{\circ}\text{C}$ and $V_{CC} = +5V$, unless otherwise noted.) (Note 1)

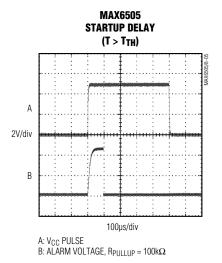
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Open-Drain Output Leakage		V _{CC} = 5.5V, V _{ALARM} = 5.5V, V _{WARN} = 5.5V (MAX6505)			1	μA
Current		$V_{CC} = 5.5V, V_{OK} = 5.5V,$ $V_{OVER} = 5.5V (MAX6507)$			1	μιν


Note 1: 100% production tested at $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design.


Note 2: Talarm, Tunder, and Tover are factory-programmed temperature trip thresholds from -40°C to +125°C in 5°C increments.


Note 3: Temperature threshold hysteresis is defined as the difference from positive-going temperature thresholds minus the negative-going temperature thresholds.


Typical Operating Characteristics


 $(V_{CC} = +5V, unless otherwise noted.)$

MIXIM

Pin Description

	Р	IN		NAME	FUNCTION
MAX6505	MAX6506	MAX6507	MAX6508	NAME	FUNCTION
1				WARN	Open-Drain Active-Low Warning Output. $\overline{\text{WARN}}$ goes low when the die temperature exceeds $T_{\text{WARN}} = T_{\text{ALARM}} - \Delta T_{\text{AW}}$.
_	1	_		WARN	Push-Pull Active-High Warning Output. WARN goes high when the die temperature exceeds $T_{WARN} = T_{ALARM} - \Delta T_{AW}$.
2	2	2	2	GND	Ground
3, 5	3, 5		_	S1, S0	Delta Temperature Select Input. Connect to V _{CC} or GND to select the difference between T _{ALARM} and T _{WARN} (Table 1 or see <i>Electrical Characteristics</i>).
		3	3	S0	Hysteresis Select Input. Connect to V _{CC} for 10°C hysteresis. Connect to GND for 2°C hysteresis.
4	4	4	4	V _{CC}	Supply Voltage Input. Bypass V _{CC} to GND with a 0.1μF ceramic capacitor.
—	_	5	5	N.C.	No Connection. Not internally connected.
		6		OVER	Open-Drain Active-Low Overtemperature Output. OVER goes low when the die temperature exceeds the factory-set value of Tover.
_		1	6	OVER	Push-Pull Active-High Overtemperature Output. OVER goes high when the die temperature exceeds the factory-set value of Tover.
l	_	1	-	OK	Open-Drain Active-High Temperature Sensor Output. OK goes high impedance when the die temperature is between the factory-set values of Tover and Tunder. When the die temperature is above Tover or below Tunder, OK goes low.
_			1	ŌK	Push-Pull Active-Low Temperature Sensor Output. \overline{OK} goes low when the die temperature is between the factory-set values of Tover and Tunder. When the die temperature is above Tover or below Tunder, \overline{OK} goes high.
6				ALARM	Open-Drain Active-Low Alarm Output. ALARM goes low when the die temperature exceeds the factory-set value of TALARM.
	6			ALARM	Push-Pull Active-High Alarm Output. ALARM goes high when the die temperature exceeds the factory-set value of TALARM.

Detailed Description

The MAX6505–MAX6508 fully integrated temperature switches incorporate two temperature-dependent references and a comparator. One reference exhibits a positive temperature coefficient and the other a negative temperature coefficient. The temperature at which the two reference voltages are equal determines the temperature trip point. There are two versions, each of which has two logic outputs.

The MAX6505/MAX6506 have a main trip point (T_{ALARM}) and a lower, "warning" trip point (T_{WARN}). When the die temperature rises above these trip points, the ALARM and WARN outputs are asserted (Figure 1). The difference between the two trip points (ΔT_{AW}) is pin selectable to +5°C, +10°C, +20°C, or +30°C by connecting the two control pins (S0 and S1) high or low (Table 1). MAX6505 has open-drain active-low outputs; MAX6506 has push-pull active-high outputs.

The MAX6507/MAX6508 have two factory-programmed threshold temperatures (Tover and Tunder) and two outputs (OK and OVER). One output (OK) asserts when the temperature is between Tover and Tunder. The other output (OVER) asserts when the temperature is above Tover. Table 4 shows the hex codes to determine the part numbers associated with specific values of Tover and Tunder. The first hex code indicates the lower trip point (Tover) and the second indicates the higher trip point (Tover). For example, a part with Tunder = -10°C and Tover = +75°C will have the part number MAX6508UTA04B (Table 4 and Figure 2). MAX6507 has open-drain outputs; MAX6508 has pushpull outputs.

Hysteresis Selection

The temperature threshold hysteresis for the ALARM output of the MAX6505/MAX6506 is 2°C. The hysteresis for the WARN output depends on the value of ΔT_{AW} . If ΔT_{AW} is 5°C or 10°C (set by S0 and S1), WARN hysteresis is 5°C. If ΔT_{AW} is 20°C or 30°C, WARN hysteresis is 10°C. MAX6507 and MAX6508 have pin-selectable hysteresis of 2°C or 10°C for both OVER and OK outputs (Table 2).

_Applications Information

Thermal Considerations

The MAX6505-MAX6508 supply current is typically $30\mu A$. When used to drive high-impedance loads, the devices dissipate negligible power. Therefore, the die temperature is essentially the same as the package temperature. The key to accurate temperature monitoring is good thermal contact between the MAX6505-MAX6508 package and the device being monitored. In

Table 1. MAX6505/MAX6506 △TAW Selection Table

CONTR	OL PINS	DESCRIPTION	
S0	S1	ΔT _{AW} =T _{ALARM} – T _{WARN} (°C)	
GND	GND	5	
GND	Vcc	10	
Vcc	GND	20	
Vcc	Vcc	30	

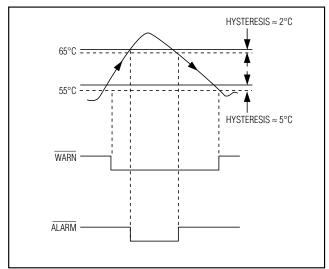


Figure 1. Temperature Response—MAX6505UTP065 Outputs, $\Delta T_{AW} = 10^{\circ}\text{C}$, and WARN Hysteresis $\approx 5^{\circ}\text{C}$

some applications, the SOT23-6 packages may be small enough to fit underneath a socketed microprocessor (μP), allowing the device to monitor the μP 's temperature directly. Use the monitor's output to reset the μP , assert an interrupt, or trigger an external alarm. Accurate temperature monitoring depends on the thermal resistance between the device being monitored and the MAX6505–MAX6508 die.

The rise in die temperature due to self-heating is given by the following formula:

$\Delta T_J = PDISSIPATION \times \theta_{JA}$

where PDISSIPATION is the power dissipated by the MAX6505–MAX6508, and θ_{JA} is the package's thermal resistance. The typical thermal resistance is +115°C/W for the SOT23-6 package. To limit the effects of self-heating, minimize the output currents. For example, if the MAX6505 sinks 5mA, the output voltage is guaranteed to be less than 0.5V. Therefore, an additional 2.5mW of

Table 2. Hysteresis Selection

	TYPICAL THRESHOLD HYSTERESIS					
PART	ALARM	RM CONDITIONS WARN CONDITIONS		OK, OVER		
MAX6505	2°C	_	5°C	$\Delta TWA = 5^{\circ}C \text{ or } 10^{\circ}C$		
MAX6506	_	_	10°C	Δ TWA = 20°C or 30°C	-	_
MAN/0507		_	_	_	2°C	S0 = GND
MAX6507 MAX6508		_	_	_	10°C	S0 = VCC

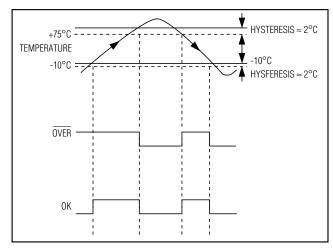


Figure 2. Temperature Response—MAX6507A04B Outputs with 2°C Hysteresis

power is dissipated within the IC. This corresponds to a +0.288°C shift in the die temperature in the SOT23-6.

Power Supply and Bypassing

The MAX6505 and MAX6508 operate from a single-supply voltage in the +2.5V to +5.5V range. Connect a $0.1\mu F$ capacitor on the supply voltage line close to the VCC pin for bypassing.

Low-Cost, Fail-Safe Temperature Monitor

The MAX6505/MAX6506 provide two outputs that can be used for fail-safe temperature applications (Figure 3). For example, the first output can activate a fan when the die temperature exceeds a certain preset temperature. The second output asserts at a higher temperature that could be caused by a wide variety of destructive fault conditions, including latchup, short circuit, and cooling system failure. This output can be used to initiate such actions as shutdown of the entire system (see *Typical Operating Circuits*).

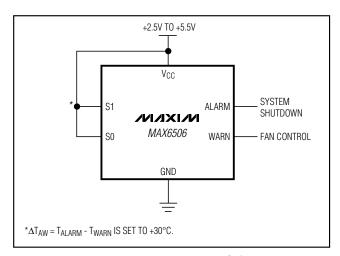


Figure 3. Low-Power, High-Reliability, Fail-Safe Temperature Monitor

The high-level integration, low cost, and small size of the MAX6505–MAX6508 facilitate the use of multiple temperature monitors to increase system reliability.

Table 3. MAX6505/MAX6506 Suffix and Top Mark Codes

PART	SUFFIX	TRIP POINT (°C)	TOP MARK
MAX6505	UTN035	-35	AAKK
MAX6505	UTN030	-30	AAKL
MAX6505	UTN025	-25	AAKM
MAX6505	UTN020	-20	AAKN
MAX6505	UTN015	-15	AAKO
MAX6505	UTN010	-10	AAKP
MAX6505	UTN005	-5	AAKQ
MAX6505	UTP000	0	AAKR
MAX6505	UTP005	5	AAKS
MAX6505	UTP010	10	AAKT
MAX6505	UTP015	15	AAKU
MAX6505	UTP020	20	AAKV
MAX6505	UTP025	25	AAKW
MAX6505	UTP030	30	AAKX
MAX6505	UTP035	35	AAKY
MAX6505	UTP040	40	AAKZ
MAX6505	UTP045	45	AALA
MAX6505	UTP050	50	AALB
MAX6505	UTP055	55	AALC
MAX6505	UTP060	60	AALD
MAX6505	UTP065	65	AALE
MAX6505	UTP070	70	AALF
MAX6505	UTP075	75	AALG
MAX6505	UTP080	80	AALH
MAX6505	UTP085	85	AALI
MAX6505	UTP090	90	AALJ
MAX6505	UTP095	95	AALK
MAX6505	UTP100	100	AALL
MAX6505	UTP105	105	AALM
MAX6505	UTP110	110	AALN
MAX6505	UTP115	115	AALO
MAX6505	UTP120	120	AALP
MAX6505	UTP125	125	AALQ

PART	SUFFIX	TRIP POINT (°C)	TOP MARK	
MAX6506	UTN035	-35	AALR	
MAX6506	UTN030	-30	AALS	
MAX6506	UTN025	-25	AALT	
MAX6506	UTN020	-20	AALU	
MAX6506	UTN015	-15	AALV	
MAX6506	UTN010	-10	AALW	
MAX6506	UTN005	-5	AALX	
MAX6506	UTP000	0	AALY	
MAX6506	UTP005	5	AALZ	
MAX6506	UTP010	10	AAMA	
MAX6506	UTP015	15	AAMB	
MAX6506	UTP020	20	AAMC	
MAX6506	UTP025	25	AAMD	
MAX6506	UTP030	30	AAME	
MAX6506	UTP035	35	AAMF	
MAX6506	UTP040	40	AAMG	
MAX6506	UTP045	45	AAMH	
MAX6506	UTP050	50	AAMI	
MAX6506	UTP055	55	AAMJ	
MAX6506	UTP060	60	AAMK	
MAX6506	UTP065	65	AAML	
MAX6506	UTP070	70	AAMM	
MAX6506	UTP075	75	AAMN	
MAX6506	UTP080	80	AAMO	
MAX6506	UTP085	85	AAMP	
MAX6506	UTP090	90	AAMQ	
MAX6506	UTP095	95	AAMR	
MAX6506	UTP100	100	AAMS	
MAX6506	UTP105	105	AAMT	
MAX6506	UTP110	110	AAMU	
MAX6506	UTP115	115	AAMV	
MAX6506	UTP120	120	AAMW	
MAX6506	UTP125	125	AAMX	

Table 4. MAX6507/MAX6508 Trip Temperature Code

TRIP TEMPERATURE (°C)	HEX CODE*
-40	82
-35	87
-30	8C
-25	91
-20	96
-15	9B
-10	A0
-5	A5
0	00
5	05
10	0A
15	0F
20	14
25	19
30	1E
35	23
40	28
45	2D
50	32
55	37
60	3C
65	41
70	46
75	4B
80	50
85	55
90	5A
95	5F
100	64
105	69
110	6E
115	73
120	78
125	7D

^{*}Two hex codes are used in the suffix. The first indicates the the low trip temperature and the second indicates the high trip temperature. For example, the MAX6507UT8255-T has a lower trip point of -40°C and an upper trip point of +85°C.

Temperature-Window Alarm

The MAX6507 and MAX6508 have an output (OK, $\overline{\text{OK}}$) that indicates the die temperature is within the selected temperature window. This output is asserted when within the window, and deasserted when outside the window. Additionally, a second digital output indicates when the die temperature is above the upper set point. This is useful in systems where operation is optimized over a predetermined temperature range. The thermal overrange signal can be used to assert a thermal shutdown, power-up, recalibration, or other temperature-dependent function (Figure 4 and *Typical Operating Circuits*).

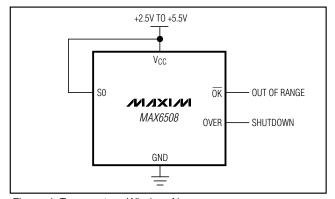
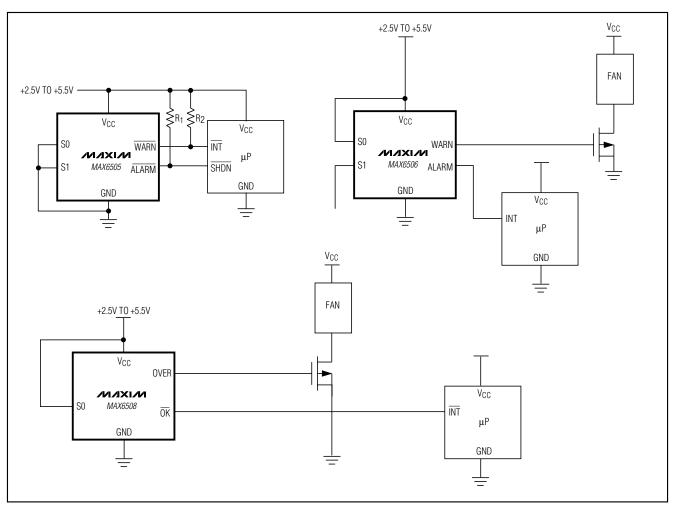
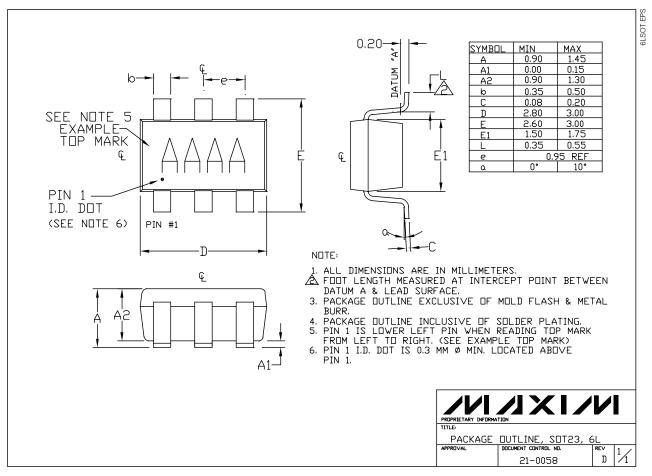



Figure 4. Temperature-Window Alarms

_Chip Information

TRANSISTOR COUNT: 796
PROCESS: BICMOS


Typical Operating Circuits

Selector Guide

PART	OUTPUT LOGIC	OUTPUT STAGE	TEMPERATURE THRESHOLD RANGE
MAX6505	ALARM, WARN	Open Drain	-40°C to +125°C
MAX6506	ALARM, WARN	Push-Pull	-40°C to +125°C
MAX6507	OVER, OK	Open Drain	-40°C to +125°C
MAX6508	OVER, OK	Push-Pull	-40°C to +125°C

Package Information

MAX6505-MAX6508

Dual Trip SOT Temperature Switches

NOTES

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.