General Description

The MAX6335/MAX6336/MAX6337 microprocessor (μ P) supervisory circuits monitor the power supplies in 1.8V to 3.3V μ P and digital systems. They increase circuit reliability and reduce cost by eliminating external components and adjustments. They also feature a debounced manual-reset input.

These devices perform a single function: they assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold or whenever manual reset is asserted. Reset remains asserted for a preset timeout period after V_{CC} has risen above the reset threshold or after manual reset is deasserted. The only difference among the three devices is their output. The MAX6336 (push/pull) and MAX6337 (open-drain) have an active-low RESET output, while the MAX6335 (push/pull) has an active-high RESET output. The MAX6336/MAX6336 are guaranteed to be in the correct state for V_{CC} down to 0.7V. The MAX6337 is guaranteed to be in the correct state for V_{CC} down to 1.0V.

The reset comparator in these ICs is designed to ignore fast transients on V_{CC}. Reset thresholds are factorytrimmable between 1.6V and 2.5V, in approximately 100mV increments. There are 15 standard versions available (2500 piece minimum-order quantity); contact the factory for availability of nonstandard versions (10,000 piece minimum-order quantity). For space-critical applications, the MAX6335/MAX6336/MAX6337 come packaged in a 4-pin SOT143.

Applications

- Pentium II[™] Computers
- Computers
- Controllers
- Intelligent Instruments
- Critical µP/µC Power Monitoring
- Portable/Battery-Powered Equipment
- Automotive

Typical Operating Circuit and Pin Configuration appear at end of data sheet.

Selector Guide appears at end of data sheet.

Pentium II is a trademark of Intel Corp.

MIXI/M

_ Maxim Integrated Products 1

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

- Ultra-Low 0.7V Operating Supply Voltage
- Low 3.3µA Supply Current
- Precision Monitoring of 1.8V and 2.5V Power-Supply Voltages
- Reset Thresholds Available from 1.6V to 2.5V, in Approximately 100mV Increments
- Debounced Manual Reset
- Fully Specified over Temperature
- Three Power-On Reset Pulse Widths Available (1ms min, 20ms min, 100ms min)
- Low Cost
- Three Available Output Structures: Push/Pull RESET, Push/Pull RESET, Open-Drain RESET
- Guaranteed RESET/RESET Valid to V_{CC} = 0.7V (MAX6335/MAX6336)
- Power-Supply Transient Immunity
- No External Components
- ♦ 4-Pin SOT143 Package
- Pin Compatible with MAX811/MAX812 and MAX6314/MAX6315

Ordering Information

PART*	TEMP. RANGE	PIN-PACKAGE
MAX6335USDT	-40°C to +125°C	4 SOT143
MAX6336US_DT	-40°C to +125°C	4 SOT143
MAX6337US_DT	-40°C to +125°C	4 SOT143

* These devices are available in factory-set V_{CC} reset thresholds from 1.6V to 2.5V, in approximately 0.1V increments. Choose the desired reset threshold suffix from Table 1 and insert it in the blanks following "US" in the part number. Factory-programmed reset timeout periods are also available. Insert the number corresponding to the desired nominal reset timeout period (1 = 1ms min, 2 = 20ms min, 3 = 100ms min) in the blank following "D" in the part number. There are 15 standard versions with a required order increment of 2500 pieces. Sample stock is generally held on the standard versions only (see Selector Guide). Contact the factory for availability of nonstandard versions (required order increment is 10,000 pieces). All devices available in tape-and-reel only.

ABSOLUTE MAXIMUM RATINGS

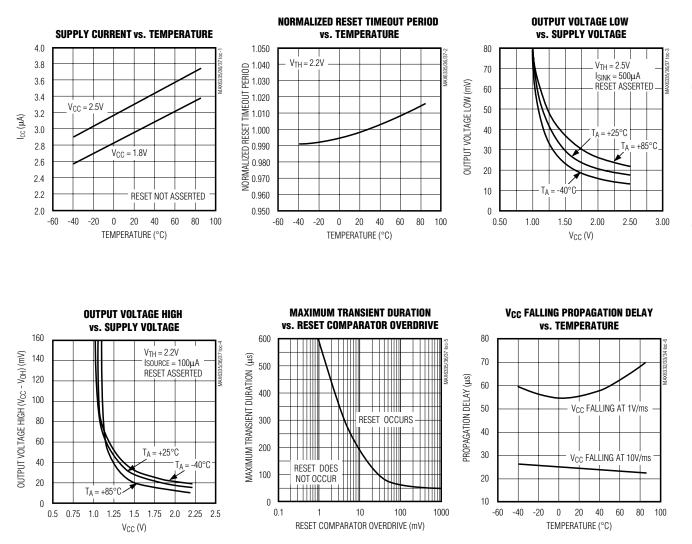
Terminal Voltage (with respect to GND)

V _{CC}	0.3V to +6V
Push/Pull RESET or RESET, MR	
Open-Drain RESET	0.3V to +6V
Input Current (V _{CC})	20mA
Output Current (RESET, RESET)	20mA

Continuous Power Dissipation (T_A = +70°C) SOT143 (derate 4mW/°C above +70°C)320mW Operating Temperature Range-40°C to +125°C Storage Temperature Range65°C to +160°C Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS


 $(V_{CC} = \text{full range}, \overline{MR} = V_{CC} \text{ or unconnected}, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at T_A = +25^{\circ}\text{C} \text{ and } V_{CC} = 3V$, reset not asserted.)

PARAMETER	SYMBOL		CONE	DITIONS	MIN	TYP	MAX	UNITS	
Supply Voltage Range	Vcc	$T_{A} = 0^{\circ}C \text{ to } +85^{\circ}C \qquad \qquad \frac{MAX6335/MAX6336}{MAX6337}$		MAX6335/MAX6336	0.7		5.5	- V	
				MAX6337	1.0		5.5		
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		MAX6335/MAX6336	0.78		5.5		
				MAX6337	1.2		5.5		
		$T_{\Delta} = -40^{\circ}C$ to $+125^{\circ}C$		MAX6335/MAX6336	1.2		5.5		
				MAX6337	1.2		5.5		
Supply Current	100	No load		$V_{CC} = 1.8V$		3.0	6.0	- μΑ	
Supply Current	ICC			$V_{CC} = 2.5V$		3.3	7.0		
Reset Threshold	V _{TH}	MAX633_USDT, Table 1		T _A = +25°C	V _{TH} - 1.8%	V _{TH}	V _{TH +} 1.8%	- V	
				$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	V _{TH} - 3%	V _{TH}	V _{TH +} 3%		
V _{CC} Falling Reset Delay		V _{CC} falling	at 10V/ms	•		24		μs	
		MAX633_USD1-T			1	1.5	2	1	
Reset Active Timeout Period	t _{RP}	MAX633_USD2-T		20	30	40	ms		
		MAX633_USD3-T		100	150	200			
RESET Output Low Voltage	Max	Reset	ISINK = 50 μ A, V _{CC} \geq 1.0V				0.4	V	
(MAX6336/MAX6337)	V _{OL}	asserted	$I_{SINK} = 500$	0μΑ, V _{CC} ≥ 1.8V			0.3	v	
RESET Output High Voltage	VOH	Reset not	ISOURCE = 200μ A, V _{CC} ≥ 1.8 V		0.8V _{CC}			V	
(MAX6336)	VOH	asserted	ISOURCE =	500µA, V _{CC} ≥ 2.7V	0.8V _{CC}			V	
	V _{OH}	Reset asserted	$I_{SOURCE} = 1\mu A, V_{CC} \ge 1.0V$		0.8V _{CC}			V	
RESET Output Voltage			$I_{\text{SOURCE}} = 200 \mu \text{A}, V_{\text{CC}} \ge 1.8 \text{V}$		0.8V _{CC}			v	
(MAX6335)	Vol	Reset not	$I_{SINK} = 500 \mu A, V_{CC} \ge 1.8 V$				0.3	v	
	VOL	asserted	ISINK = 1.2	mA, $V_{CC} \ge 2.7V$			0.3	v	
MR Minimum Pulse Width					1			μs	
MR Glitch Immunity		$V_{\rm CC} = 2.6V$				160		ns	
MR Reset Delay		$V_{CC} = 2.6V$				0.42		μs	
MR Threshold	V MR				0.3V _{CC}		0.7V _{CC}	V	
MR Pull-Up Resistance					12	20	30	kΩ	
RESET Output Leakage Current (MAX6337)		V _{CC} > V _{TH} , RESET deasserted					0.5	μA	

Typical Operating Characteristics

(Reset not asserted, $T_A = +25^{\circ}C$, unless otherwise noted.)

Pin Description

PIN MAX6335 MAX6336 MAX6337			FUNCTION		
		NAME			
1	1	GND	Ground		
_	2	RESET	Active-Low Reset Output. RESET remains low while V _{CC} is below the reset threshold, or $\overline{\text{MR}}$ is asserted and for a reset timeout period (t _{RP}) after V _{CC} rises above the reset threshold, or $\overline{\text{MR}}$ is deasserted. RESET on the MAX6337 is open-drain.		
2	_	RESET	Active-High Reset Output. RESET remains high while V _{CC} is below the reset threshold, or $\overline{\text{MR}}$ is asserted and for a reset timeout period (t _{RP}) after V _{CC} rises above the reset threshold, or $\overline{\text{MR}}$ is deasserted. RESET also asserts when $\overline{\text{MR}}$ is low.		
3	3	MR	$\begin{array}{l} \mbox{Manual-Reset Input. A logic low on $\overline{\mbox{MR}}$ asserts reset. Reset remains asserted as long as $\overline{\mbox{MR}}$ is low, and for the reset timeout period (t_{\mbox{RP}}) after $\overline{\mbox{MR}}$ goes high. Leave unconnected or connect to V_{CC} if not used. } \end{array}$		
4	4	V _{CC}	Supply Voltage (0.7V to 5.5V)		

Applications Information Manual-Reset Inputs

Many μ P-based products require manual-reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for the reset active timeout period after MR returns high. MR has an internal 20k Ω pull-up resistor, so it can be left unconnected if not used. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required.

Interfacing to µPs with Bidirectional Reset Pins

Since the RESET output on the MAX6337 is open-drain, this device interfaces easily with μ Ps that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the μ P supervisor's RESET output directly to the microcontroller's (μ C's) RESET pin with a single pull-up resistor allows either device to assert reset (Figure 1).

Negative-Going VCC Transients

In addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, these devices are relatively immune to short-duration, negative-going V_{CC} transients (glitches). The *Typical Operating Characteristics* show the Maximum Transient Duration vs. Reset Comparator Overdrive graph. The graph shows the maximum pulse width that a negative-going V_{CC} transient may typically have without issuing a reset signal. As the amplitude of the transient increases, the maximum allowable pulse width decreases.

Ensuring a Valid Reset Output down to VCC = 0

When V_{CC} falls below 1V and approaches the minimum operating voltage of 0.7V, push/pull-structured reset sinking (or sourcing) capabilities decrease drastically. High-impedance CMOS-logic inputs connected to the RESET pin can drift to indeterminate voltages. This does not present a problem in most cases, since most μ Ps and circuitry do not operate at V_{CC} below 1V. For the MAX6336, where RESET must be valid down to 0, adding a pull-down resistor between RESET and GND removes stray leakage currents, holding RESET low

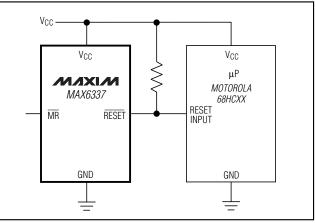


Figure 1. Interfacing to µPs with Bidirectional Reset Pins

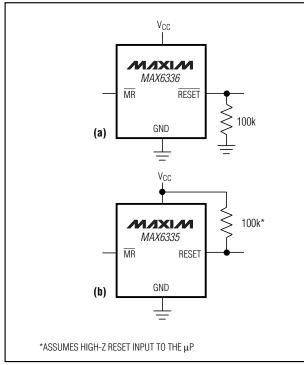
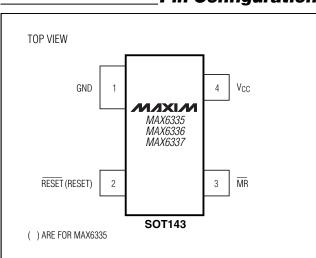


Figure 2. Ensuring Reset Valid down to $V_{CC} = 0$

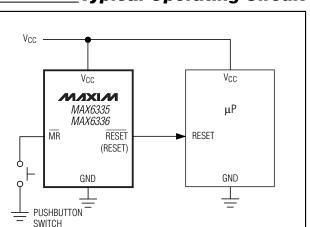
(Figure 2a). The pull-down resistor value is not critical; 100k Ω is large enough not to load RESET, and small enough to pull it low. For the MAX6335, where RESET must be valid to V_{CC} = 0, a 100k Ω pull-up resistor between RESET and V_{CC} will hold RESET high when V_{CC} falls below 0.7V (Figure 2b).

Since the MAX6337 has an open-drain, active-low output, it typically uses a pull-up resistor. With this device, RESET will most likely not maintain an active condition, but will drift to a non-active level due to the pull-up resistor and the reduced sinking capability of the opendrain device. Therefore, this device is not recommended for applications where the RESET pin is required to be valid down to $V_{CC} = 0$.

Table 1. Factory-Trimmed Reset Thresholds*


RESET THRESHOLD	T _A = +25°C			T _A = -40°C to +125°C		
SUFFIX	MIN	ТҮР	МАХ	MIN	MAX	
MAX633_US25D_	2.46	2.50	2.55	2.43	2.58	
MAX633_US24D_	2.36	2.40	2.44	2.33	2.47	
MAX633_US23D_	2.26	2.30	2.34	2.23	2.37	
MAX633_US22D_	2.16	2.20	2.24	2.13	2.27	
MAX633_US21D_	2.06	2.10	2.14	2.04	2.16	
MAX633_US20D_	1.96	2.00	2.04	1.94	2.06	
MAX633_US19D_	1.87	1.90	1.93	1.84	1.96	
MAX633_US18D_	1.77	1.80	1.83	1.75	1.85	
MAX633_US17D_	1.67	1.70	1.73	1.65	1.75	
MAX633_US16D_	1.57	1.60	1.63	1.55	1.65	

* Factory-trimmed reset thresholds are available in approximately 100mV increments, with a ±1.8% room-temperature variance.


			•	-
PART	OUTPUT STAGE	NOMINAL V _{TH} (V)	MINIMUM RESET TIMEOUT (ms)	SOT TOP MARK
MAX6335US23D3-T	Push/Pull RESET	2.30	100	KABQ
MAX6335US22D3-T	Push/Pull RESET	2.20	100	KAAR
MAX6335US20D3-T	Push/Pull RESET	2.00	100	KABP
MAX6335US18D3-T	Push/Pull RESET	1.80	100	KAAQ
MAX6335US16D3-T	Push/Pull RESET	1.60	100	KAAP
MAX6336US23D3-T	Push/Pull RESET	2.30	100	KAAW
MAX6336US22D3-T	Push/Pull RESET	2.20	100	KAAV
MAX6336US20D3-T	Push/Pull RESET	2.00	100	KAAU
MAX6336US18D3-T	Push/Pull RESET	1.80	100	KAAT
MAX6336US16D3-T	Push/Pull RESET	1.60	100	KAAS
MAX6337US23D3-T	Open-Drain RESET	2.30	100	KABS
MAX6337US22D3-T	Open-Drain RESET	2.20	100	KAAZ
MAX6337US20D3-T	Open-Drain RESET	2.00	100	KABR
MAX6337US18D3-T	Open-Drain RESET	1.80	100	KAAY
MAX6337US16D3-T	Open-Drain RESET	1.60	100	KAAX

Selector Guide (standard versions*)

* Sample stock is generally held on all standard versions.

Pin Configuration

Typical Operating Circuit

() ARE FOR MAX6335

Chip Information

TRANSISTOR COUNT: 505

SOT1434.EPS INCHES MILLIMETERS DIM MAX MIN MAX MIN 0.031 0.047 0.787 1.194 А 0.025 0.127 Α1 0.001 0.005 0.014 Œ В 0.022 0.356 0.559 0.762 0.965 Β1 0.030 0.038 С 0.0034 0.006 0.086 0.152 (j Н \mathbb{D} 0.105 0.120 2.667 3.048 1.397 0.047 1.194 E 0.055 e1 0.071 0.079 1.803 2.007 e2 0.008 BSC 0.200 BSC 0.082 2.083 2.489 0.098 Н ·e7 Ι 0.004 0.012 0.102 0.305 B1 S 0.018 0.024 0.450 0.600 0° 8° 0° 8* α NDTES: 1. D&E DO NOT INCLUDE MOLD FLASH. 2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15mm (.006") 3. CONTROLLING DIMENSION: MILLIMETER /VI/IXI/VI Ę Ę Α1 $\begin{bmatrix} 1 \\ C \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 21-0052

Package Information

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Printed USA

© 2000 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products.