

Voltage-Output, 12-Bit Multiplying DACs

Voltage－Output；12－Bit Multiplying DACs

Voltage－Output，12－Bit Multiplying DACs

PARAMETER	SYMBOL	CON	ITIONS	MIN	TYP	max	UNITS
MAX501							
Chip Select to Write－Setup Time	tcs			0			ns
Write Pulse Width	twr	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		55			ns
		$T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$		70			
Data－Setup Time	tos	MAX501＿C／E		50			ns
		MAX501＿M		60			
Data－Hold Time	tor			10	0		ns
LDAC Pulse Width	tldac			70			ns
CLR Pulse Width	tclin			70			ns
SET Pulse Width	tset			200			ns
MAX502							
Chip Select to Write－Setup Time	tcs			0			ns
Write Pulse Width	twr	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40			ns
		$T_{A}=T_{\text {MIN }}$ to $T_{\text {max }}$	MAX502＿C／E	50			
			MAX502＿M	60			
Data－Setup Time	tos	MAX502＿C／E		50			ns
		MAX502＿M		60			
Data－Hold Time	toh			10	0		ns

Voltage-Output, 12-Bit Multiplying DACs

Figure 1b. MAX502 Timing Diagram
MOTES: All input signal rise and fall times measured from 10% to 90% of $+5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20$ ns. 2. Timing measurement reference level is $\frac{V_{1 H}+V_{I I}}{2}$

Voltage－Output，12－Bit Multiplying DACs

MAX501			MAX502		
PIN	Name	FUNCTION	PIN	name	FUNCTION
1	Vout	Voltage Output	1	Vout	Voltage Output
2	LDAC	Asynchronous Load DAC Input is active low	2－11	D11－D2	Data Bits 2 to 11 （MSB）
3	$\overline{\text { SET }}$	Sets DAC register to all 1 is	12 13,14	DGND	Digital Ground
4	$\overline{\mathrm{CLR}}$	Sets DAC register to all 0 s	15	$\overline{\text { wi }}$	Data Bits 0 to 1 （LSB）
5－8	D7－D4	Data Bits 7 to 4	16	$\overline{\mathrm{cs}}$	Chip－Select Input is active low
9	D3／D11	Data Bit 3 or 11	17	VREF	Reference Input to DAC
10	D2／D10	Data Bit 2 or 10	18	AGND	Analog Ground
11	D1／09	Data Bit 1 or 9	19	$\mathrm{V}_{\text {ss }}$	－t2V to－15V Supply Voltage Input
12	DGND	Digital Ground	20	$V_{\text {DD }}$	+12 V to +15 V Supply Voltage Input
13	D0／D8	Data Bit 0 or 8 （LSB）	21	RA	Scaling Resistor： $\mathrm{RA}=4 \mathrm{RFB}$
14	CSLSB	LSB Chip－Select Input is active low	22	RB	Scaling Resistor： $\mathrm{RB}=2 \mathrm{FFB}$
15	WR	Write Input is active low	23	RC	Scaling Resistor： $\mathrm{RC}=2 \mathrm{RFB}$
16	CSMSE	MSB Chip－Select Input is active low	24	RFB	Feedback Resistor
17	VREF	Reference Input to DAC			
18	AGND	Analog Ground			
19	$\mathrm{V}_{\text {ss }}$	－12V to－15V Supply Voltage Input			
20	$V_{\text {DD }}$	＋12V to +15 V Supply Voltage Input			
21	RA	Scaling Resistor：RA＝4RFB			
22	RB	Scaling Resistor： $\mathrm{RB}=2 \mathrm{FFB}$			
23	RC	Scaling Resistor： $\mathrm{RC}=2$ 2FB			
24	RFB	Feedback Resistor			

Voltage－Output，12－Bit Multiplying DACs

Detailed Description

Digital Clrcuit
Figures 2a and 2b are simplified circuit diagrams of the MAX501 and MAX502 input control logic．For the MAX501，a low on CSLSB and WR with CSMSB high loads the least signifcant bit（LSB）byte into the inpu registr．Th LSB by is he in MO Similarly，a low on CSMSB and WR with CSLSB high Similarly，a low on CSMSB and WR with CSLSB high
loads the most significant bit（MSB）nibble into the inpu register．The MSB nibble is then latched into the input register on the rising edge of either a WR or a CSMSE pulse．With all 12 bits loaded，a low on LDAC transfers the data to the DAC register．For the MAX502，a low on $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ transfers the data on the input registers to the DAC latch．Both parts＇digital inputs are TTL and CMOS compatible，providing easy microprocessor（ $\mu \mathrm{F}$ ） interfacing Tables 1 and 2 are MAX501 and MAX502 truth tables．

Table 1．MAX501 Truth Table

$\overline{\text { WR }}$	CSMSE	CSLSE	LDAC	$\overline{\text { CLR }}$	$\overline{\text { SET }}$	OPERATION
X	X	X	X	X	0	DAC Register overridden by 1＇s Input Register unaffected
x	x	X	X	0	1	DAC Register overridden by 0＇s Input Register unaffected
0	0	1	1	1	1	Load MSB nibble into Input Register
0	1	0	1	1	1	Load LSB byte into Input Register
X	X	X	0	1	1	Transfer Input Register to DAC Register
1	X	X	1	1	1	No Operation
0	1	1	1	1	1	No Operation
0	R	1	1	1	1	Latching MSB nibble into Input Register
R	0	1	1	1	1	Latching MSB nibble into Input Register
0	1	R	1	1	1	Latching LSB byte into Input Register
R	1	0	1	1	1	Latching LSB byte into Input Register

$\mathrm{H}=$ High State， $\mathrm{L}=$ Low State， $\mathrm{R}=$ Rising Edge， $\mathrm{X}=$ Don＇t Care
Table 2．MAX502 Truth Table

$\overline{\text { WR }}$	$\overline{\mathbf{C S}}$	OPERATION
H	\mathbf{X}	No Operation
X	H	No Operation
L	L	Input Register is Transparent
L	R	Input Register is Latched
R	L	Input Register is Latched

$\mathrm{H}=$ High State， $\mathrm{L}=$ Low State， $\mathrm{R}=$ Rising Edge， $\mathrm{X}=$ Don＇t Care

Voltage－Output，12－Bit Multiplying DACs

MAX501／MAX502

Figure 3．MAX501／MAX502 Simplified DAC and Amplifier Circuit
ハースメIノV

Voltage-Output, 12-Bit Multiplying DACs

Output-Buffor Amp/Ifler

The output amplifier is an internally compensated, noninverting, gain-scalable amplifier that can develop $\pm 10 \mathrm{~V}$ across a $2 \mathrm{k} \Omega$ load. Maximum settling time is less than $5 \mu s$ (to within 0.01% FSR). Input offset voltage is laser The trimed at the wafer level. Slew rate is typically $7 / \mu \mathrm{s}$. The gain-setting resistors (RA, RB, and RC) connect to

Unipolar Conflguration
Figure 4, a typical configuration for the MAX501/502, provides for unipolar-bipolar operation or two-quadrant provides for unipolar-bipolar operation or two-quadrant multiplication when VIN is an AC signal. R1 adjusts gain tions, trim the reference voltage and omit R1 and R2. If R1 and R2 are included, you must take into account their gaintemperature coetficient. The typical gain-temperature coefficient of the MAX502 is $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, which corresponds to a gain shift of $1 / 2$ LSB over a $+100^{\circ} \mathrm{C}$ temperature range. Table 3 is the code table for unipolarbinary operation.

Figure 4. Unipolar-Binary Operation
(2-Quadrant Multiplication)
Table 3. MAX501/MAX502 Unipolar-Binary Code Table

DIGITAL INPUT		ANALOG OUTPUT	
1111	1111	1111	$\left(-V_{\text {IN }}\right) \frac{4095}{4096}$
1000	0000	0000	$\left(-V_{\text {IN }}\right) \frac{2048}{4096}=-\frac{1}{2} \mathrm{~V}_{\text {IN }}$
0000	0000	0001	$\left(-\mathrm{V}_{\text {IN }}\right) \frac{1}{4096}$
0000	0000	0000	OV

Bipolar Operation
Figure 5 shows a 4-quadrant, bipolar operation. Gain error may be adjusted by changing the R1 and R2 ratio. These resistors should be ratio-matched to 0.01% to stay within gain-error specifications and to eliminate RB and RC internal resistors. Table 4 is the code table for bipolar-binary operation.

Figure 5. Bipolar Operation (4-Quadrant Multiplication)
Table 4. MAX501/MAX502 Bipolar-Binary Code Table

DIGITAL INPUT		ANALOG OUTPUT	
1111	1111	1111	$\left(+V_{\text {IN }}\right) \frac{2047}{2048}$
1000	0000	0001	$\left(+V_{I N}\right) \frac{1}{2048}$
1000	0000	0000	OV
0111	1111	1111	$\left(-V_{I N}\right) \frac{1}{2048}$
0000	0000	0000	$\left(-V_{I N}\right) \frac{2048}{2048}=V_{\text {IN }}$

Voltage－Output，12－Bit Multiplying DACs

Figure 6．MAX502 Interface Circuit－Latches Minimize Digital Feedthrough

MAX502 MIcroprocessor Interfacing 16－Bit Microprocessor Systems Figures 7－9 show the MAX502 interfaced with the MC68000，the 8086，and the TMS32010．The MAX502 appears as a memory－mapped peripheral to the pro－ cessors．In each case，a write instruction loads the MAX502 with the appropriate data．The particular instructions used are as follows：

$\begin{array}{ll}\text { TMS32010：} & \text { MOV } \\ \end{array}$

Figure 7．MAX502 to MC6800 Interface

Figure 8．MAX502 to 8086 Interface

Voltage－Output，12－Bit Multiplying DACs

Figure 10 shows an interface circuit for the MAX501 to Figure 10 shows an interface circuit for the MAX501 to
the 8085A 8－bit $\mu \mathrm{P}$ ．The software routine to load data to the 8085A 8 －bit $\mu \mathrm{P}$ ．The software routine to load data to
the device is given in Table 3．Note that transferring 12 the device is given in Table 3．Note that transferring 12
data bits requires two write operations．The first of these data bits requires two write operations．The first of these
loads the 4 MSBs into the 7475 latch．The second write loads the 4 MSBs into the 7475 latch．The second write operation loads the 8 LSBs plus the 4 MSBs（which are held by the latch）into the DAC．

Pin Configurations（continued）
TOP VIEW

$\mathrm{V}_{\text {out }} 1$		$24 . \mathrm{RFB}$
LDAC 2		23 RC
SET ${ }^{3}$		22 RB
$\overline{C L R} 4$		21 RA
075		$20 V_{D 0}$
D6 6		19 V SS
057		18 AGND
D4 8		177 VREF
03／011－9		16.
2／010 10		15 WR
D109 11		14.
OGNO 12		（13）D0／D8
	DIP／SO	

＿Ordering Information（continued）

| PART | TEMP RANGE | PIN－
 PACKAGE | ERROR
 （LSBa） |
| :--- | :--- | :--- | :--- | :--- |
| MAX502ACNG | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 24 Narrow Plastic DIP | $1 / 2$ |
| MAX502BCNG | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 24 Narrow Plastic DIP | $3 / 4$ |
| MAX502ACWG | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 24 Wide SO | $1 / 2$ |
| MAX502BCWG | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 24 Wide SO | $3 / 4$ |
| MAX502BC／D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice | |
| MAX502AENG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24 Narrow Plastic DIP | $1 / 2$ |
| MAX502BENG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24 Narrow Plastic DIP | $3 / 4$ |
| MAX502AEWG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24 Wide SO | $1 / 2$ |
| MAX502BEWG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24 Wide SO | $3 / 4$ |
| MAX502AMRG | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 24 Narrow CERDIP＊＊ | $1 / 2$ |
| MAX502BMRG | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 24 Narrow CERDIP＊＊ | $3 / 4$ |

－Contact factory for dice specificiations．
Contact factory for dice speciricalions．

