

/VI/IXI/VI

+3.3V, 2.125Gbps/1.0625Gbps Fibre Channel Port Bypass ICs

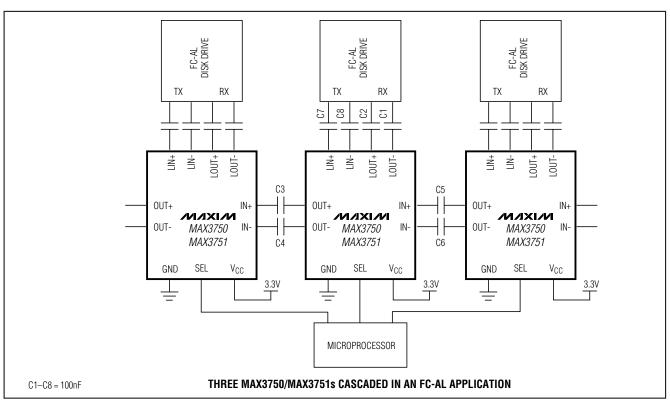
General Description

The MAX3750/MAX3751 are +3.3V, Fibre Channel port bypass ICs that include a high-speed multiplexer and output buffer stage for hot swapping a storage device. These devices are optimized for use in a Fibre Channel arbitrated loop topology.

The MAX3750 has a 2.125Gbps data rate, while the MAX3751's data rate is 1.0625Gbps. Total power consumption (including output currents) is low: just 190mW for the MAX3750 and 180mW for the MAX3751. Low 10ps jitter makes these devices ideal for cascaded topologies. The output driver circuitry is tolerant of load mismatches commonly caused by board vias and inductive connectors. On-chip termination reduces external part count and simplifies board layout.

Applications

2.125Gbps Fibre Channel Arbitrated Loop 1.0625Gbps Fibre Channel Arbitrated Loop Mass Storage Systems RAID/JBOD Applications


Features

- ♦ Single +3.3V Supply
- ♦ Low Jitter: 10ps
- **♦ Low Power Consumption** 190mW (MAX3750) 180mW (MAX3751)
- ♦ Large Output Signal Swing: >1000mVp-p
- **♦ Mismatch Tolerant Output Driver Stage**
- **♦** 150Ω Differential On-Chip Termination on All Inputs
- **♦** 150Ω On-Chip Back Termination on All Output **Ports**

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX3750CEE	0°C to +70°C	16 QSOP
MAX3751CEE	0°C to +70°C	16 QSOP

Typical Application Circuit

Pin Configuration appears at end of data sheet.

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, VCC	0.5V to +5.0V
Voltage at LOUT+, LOUT-,	
OUT+, OUT	(V _{CC} - 1.65V) to (V _{CC} + 0.5V)
Current Out of LOUT+, LOUT-,	OUT+, OUT±22mA
Voltage at SEL, LIN+, LIN-, IN-	+, IN0.5V to (V _{CC} + 0.5V)
Differential Voltage at (LIN+ - L	_IN-), (IN+ - IN-)±2V

Continuous Power Dissipation ($T_A = +70^{\circ}$	°C)
16 QSOP (derate 8.3mW/°C above +70	D°C)667mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	55°C to 150°C
Lead Soldering Temperature (soldering,	10sec)+300°C

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = 0 ^{\circ}\text{C} \text{ to } +70 ^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3 \text{V and } T_A = +25 ^{\circ}\text{C.})$

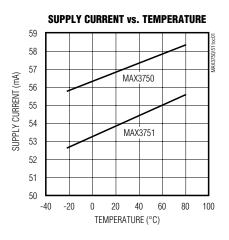
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Cupaly Current	MAX3750 (Note 1)		57	84	m 1	
Supply Current	MAX3751 (Note 1)		54	78	mA	
Data Input Voltage Swing	Total differential signal, peak-to-peak	200		2200	mV	
Differential Input Impedance		132	150	172	Ω	
Output Voltage at LOUT± and OUT±	150 Ω load, total differential signal, peak-to-peak	1000		1600	mV	
TTL Input Current		-10		10	μΑ	
TTL Input Low		-0.3		0.8	V	
TTL Input High		2	1	V _{CC} + 0.3	V	

Note 1: Output currents included.

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3 \text{V}$ and $T_A = +25^{\circ}\text{C}.)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Data Rate	MAX3750		2.125		Gbps	
Data Nate	MAX3751		1.0625			
Data Input Voltage Swing	Total differential signal, peak-to-peak	200		2200	mV	
Output Edge Speed	MAX3750			160	no	
IN± →OUT±, IN± →LOUT±	MAX3751			325	ps	
Deterministic Jitter	MAX3750, peak-to-peak (Notes 2, 4)		10		no	
$ \text{IN}_{\pm} \rightarrow \text{OUT}_{\pm}, \text{IN}_{\pm} \rightarrow \text{LOUT}_{\pm}, \text{LIN}_{\pm} \rightarrow \text{OUT}_{\pm}$	MAX3751, peak-to-peak (Notes 3, 4)		10		ps	
Random Jitter	MAX3750, RMS (Note 2)			1.6	no	
$ N \pm \rightarrow OUT \pm, N \pm \rightarrow LOUT \pm, LIN \pm \rightarrow OUT \pm $	MAX3751, RMS (Note 3)			1.6	ps	
Prop Delay	MAX3750		300		200	
IN± →OUT±, IN± →LOUT±, LIN± →OUT±	MAX3751		442		ps	


Note 2: Input t_R and t_F < 150ps, 20% to 80%.

Note 3: Input t_R and $t_F < 300 ps$, 20% to 80%.

Note 4: Deterministic jitter is measured with 20 bits of the k28.5 pattern (00111110101100000101).

Typical Operating Characteristics

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION
1, 4, 5, 8, 16	GND	Electrical Ground
2	LOUT+	Noninverted Port Data Output
3	LOUT-	Inverted Port Data Output
6	OUT+	Noninverted Data Output
7	OUT-	Inverted Data Output
9	SEL	Select Input: SEL = Low: $IN\pm \rightarrow OUT\pm$ SEL = High: $LIN\pm \rightarrow OUT\pm$
10	LIN-	Inverted Port Data Input
11	LIN+	Noninverted Port Data Input
12, 13	Vcc	Positive Supply Voltage
14	IN-	Inverted Data Input
15	IN+	Noninverted Data Input

Circuit Description

A simplified block diagram of the single port bypass is shown in Figure 1. IN+ and IN- drive an input buffer (INBUFF) with 150 Ω of internal differential input termination. INBUFF drives an output buffer (LOBUFF) and an input to a multiplexer (MUX).

A low TTL input at SEL selects the signal path of INBUFF through MUX to the output buffer (OUTBUFF). When SEL has a high TTL logic level present the signal path is into LIBUFF, through MUX, to OUTBUFF.

Low-Frequency Cutoff

The low-frequency cutoff is determined by the input resistance and the coupling capacitor as illustrated by the following equation:

 $fC = 1/(2\pi RC)$

In a typical system where R = 150Ω and C = 100nF, resulting in f_C = 10kHz.

Layout Techniques

The MAX3750/MAX3751 are high-frequency products. The performance of the circuit is largely dependent upon layout of the circuit board. Use a multilayer circuit board with dedicated ground and VCC planes. Power supplies should be capacitively bypassed to the ground plane with surface-mount capacitors placed near the power-supply pins.

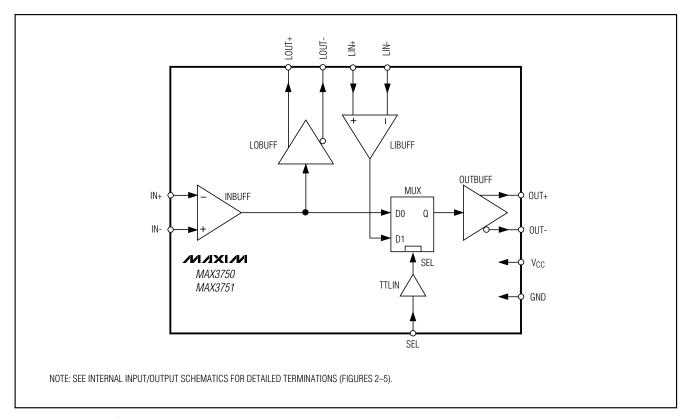


Figure 1. MAX3750/MAX3751 Block Diagram

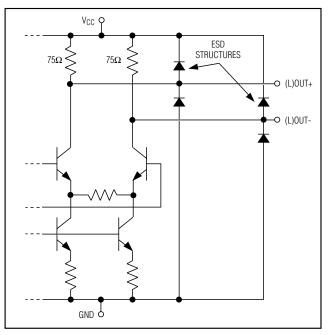


Figure 2. LOUT/OUT Pins Internal Input/Output Schematic

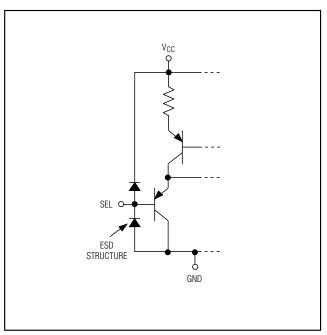


Figure 3. SEL Pin Internal Input/Output Schematic

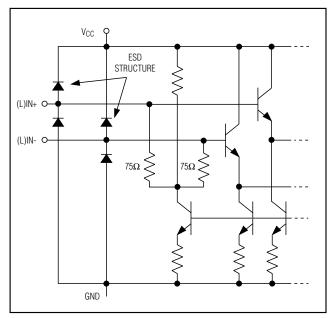


Figure 4. LIN/IN Pins Internal Input/Output Schematic

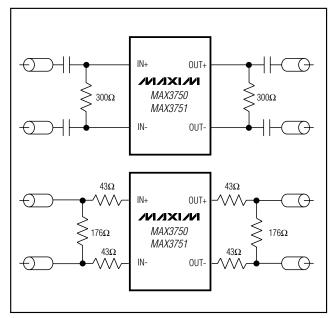
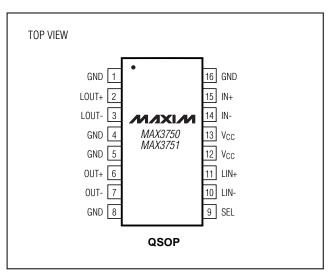
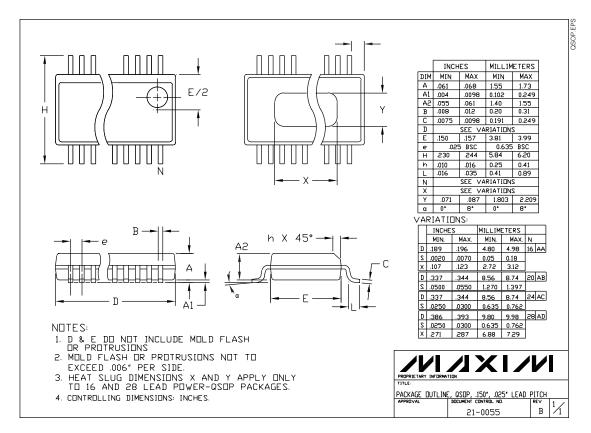




Figure 5. 50Ω Termination Applications

Pin Configuration

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6 _______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600