

Abstract

General Description The monolithic MAX2451 is a quadrature demodulator with a supporting oscillator and divide-by-8 prescaler. It operates from a single +3 V supply and draws only 5.5 mA . The demodulator accepts an amplified and filtered IF signal in the 35 MHz to 80 MHz range, and demodulates it into I and Q baseband signals with 51 dB of voltage conversion gain. The IF input is terminated with a 400Ω thin-film resistor for matching to an external IF filter. The baseband outputs are fully differential and have $1.2 \mathrm{Vp}-\mathrm{p}$ signal swings. Pulling the CMOS-compatible ENABLE pin low shuts down the MAX2451 and reduces the supply current to less than $2 \mu \mathrm{~A}$, typical. To minimize spurious feedback, the MAX2451's internal oscillator is set at twice the IF frequency via external tuning components. The MAX2451 comes in a 16-pin narrow SO package.

Applications
Digital Cordless Phones
GSM and North American Cellular Phones
Wireless LANs
Digital Communications
Pagers

Pin Configuration

Features

- Integrated Quadrature Phase Shifters
- On-Chip Oscillator (Requires External Tuning Circuit)
- 51dB Voltage Conversion Gain
- On-Chip Divide-by-8 Prescaler
- Baseband Output Bandwidth Up to 9MHz
- CMOS-Compatible Enable
- 5.5 mA Operating Supply Current $2 \mu \mathrm{~A}$ Shutdown Supply Current

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX2451CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO

Functional Diagram

MAXIAU \qquad Maxim Integrated Products

Call toll free 1-800-998-8800, or visit our WWW site at http://www.maxim-ic.com for free samples or the latest literature.

3V, Ultra-Low-Power Quadrature Demodulator

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{LO} \mathrm{V}_{\mathrm{CC}}=\overline{\mathrm{TANK}}=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{ENABLE}=\mathrm{V} C C-0.4 \mathrm{~V}, \mathrm{GND}=\mathrm{LO} \mathrm{GND}=0 \mathrm{~V}, \mathrm{I}=\overline{\mathrm{I}}=\mathrm{Q}=\overline{\mathrm{Q}}=\mathrm{IF}=\mathrm{TANK}=\mathrm{OPEN}$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Supply Voltage Range	$\begin{gathered} \text { VCC, } \\ \text { LO_VCC } \end{gathered}$		2.7	3.3	V
Supply Current	$\mathrm{ICC}(\mathrm{ON})$		5.5	7.4	mA
Shutdown Supply Current	ICC(OFF)	Enable $=0.4 \mathrm{~V}$	2	20	$\mu \mathrm{A}$
Enable/Disable Time	ton/OFF		10		$\mu \mathrm{s}$
ENABLE Bias Current	IEN		1	3	$\mu \mathrm{A}$
ENABLE High Voltage	VENH		VCC - 0.4		V
ENABLE Low Voltage	VENL			0.4	V
IF Input Impedance	ZIN		320400	480	Ω
I, İ, Q, $\overline{\mathrm{Q}}$ Voltage Level	VIII, $V_{Q / \bar{Q}}$		1.2		V
Baseband I and Q DC Offset			± 11	± 50	mV

AC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=\mathrm{LO}_{-} \mathrm{V}_{\mathrm{CC}}=\mathrm{ENABLE}=3.0 \mathrm{~V}, \mathrm{fLO}=140 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=70.1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IF}}=2.82 \mathrm{mVp}-\mathrm{p}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Baseband I and Q Amplitude Balance				< ± 0.45		dB
Baseband I and Q Phase Accuracy				$< \pm 1.3$		degrees
Voltage Conversion Gain				51		dB
Noise Figure	NF			18		dB
Allowable I and Q Voltage Swing		(Note 1)			1.35	Vp-p
I and Q IM3 Level	IM3I/Q	(Note 2)		-44		dBc
I and Q IM5 Level	IM5I/Q	(Note 2)		-60		dBc
I and Q Signal 3dB Bandwidth	BW3dB			9		MHz
Oscillator Frequency Range	flo	(Notes 1, 3)	70		160	MHz
PRE_OUT Output Voltage	VPRE_OUT	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<6 \mathrm{pF}$		0.35		Vp-p
PRE_OUT Slew Rate	SRPRE_OUT	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{CLL}^{2} \mathrm{6pF}$, rising edge		60		V/ $/ \mathrm{s}$
Oscillator Phase Noise		Offset $=10 \mathrm{kHz}$		-80		$\mathrm{dBc} / \mathrm{Hz}$

Note 1: Guaranteed by design, not tested.
Note 2: $\mathrm{f} / \mathrm{F}=2$ tones at 70.10 MHz and $70.11 \mathrm{MHz}, \mathrm{V}_{\mathrm{IF}}=1.41 \mathrm{mVp}-\mathrm{p}$ per tone.
Note 3: Oscillator frequencies up to 1 GHz (500 MHz IF) by externally overdriving (see Applications Information).

3V, Ultra-Low-Power Quadrature Demodulator

Typical Operating Characteristics
$\left(V_{C C}=L O _V_{C C}=E N A B L E=3.0 V, f L O=140 M H z, f I F=70.1 \mathrm{MHz}, V_{I F}=2.82 \mathrm{mVp}-\mathrm{p}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

PHASE AND AMPLITUDE GOIN

3V, Ultra-Low-Power Quadrature Demodulator

PIN	NAME	FUNCTION
1	IF	IF Input
2, 3, 16	GND	Ground
4	N.C.	No Connect. No internal connection to this pin.
5	ENABLE	Enable Control, active high
6	PRE_OUT	Local-Oscillator Divide-by-8 Prescaled Output
7	LO_Vcc	Local-Oscillator Supply. Bypass separately from Vcc.
8	TANK	Local-Oscillator Resonant Tank Input
9	TANK	Local-Oscillator Resonant Tank Inverting Input
10	LO_GND	Local-Oscillator Ground
11	\bar{Q}	Baseband Quadrature Inverting Output
12	Q	Baseband Quadrature Output
13	İ	Baseband Inphase Inverting Output
14	I	Baseband Inphase Output
15	VCC	Demodulator Supply

Detailed Description

The following sections describe each of the functional blocks shown in the Functional Diagram. Also refer to the Typical Application Block Diagram (Figure 1).

Demodulator

The demodulator contains a single-ended-to-differential converter, two Gilbert-cell multipliers, and two fixed gain stages. Internally, IF is terminated with a 400Ω resistor to GND. The IF input signal is AC coupled into the input amplifier, which has 14 dB of gain. This amplified IF signal is fed into the I and Q channel mixers for demodulation. The multipliers mix the IF signal with the quadrature LO signals, resulting in baseband I and Q signals. The conversion gain of the multipliers is 15 dB . These signals are further amplified by 21 dB by the baseband amplifiers. The baseband amplifier chains are DC coupled.

Figure 1. Typical Application Block Diagram

Local Oscillator

The local-oscillator section is formed by an emitter-coupled differential pair. Figure 2 shows the local-oscillator equivalent circuit schematic. An external LC resonant tank determines the oscillation frequency, and the Q of this resonant tank affects the oscillator phase noise. The oscillation frequency is twice the IF frequency, for easy generation of quadrature signals.
The oscillator may be overdriven by an external source. The source should be AC coupled into TANK/TANK, and should provide 200 mVp -p levels. A choke (typically $2.2 \mu \mathrm{H}$) is required between TANK and TANK. Differential input impedance at TANK/TANK is $10 \mathrm{k} \Omega$. For singleended drive, connect an AC bypass capacitor (1000pF) from TANK to GND, and AC couple TANK to the source.
The oscillator can be overdriven at frequencies up to $1 \mathrm{GHz}(500 \mathrm{MHz}$ IF), but conversion gain and prescaler output levels will be somewhat reduced.

3V, Ultra-Low-Power Quadrature Demodulator

Figure 2. Local-Oscillator Equivalent Circuit
Quadrature Phase Generator
The quadrature phase generator uses two latches to divide the local-oscillator frequency by two, and generates two precise quadrature signals. Internal limiting amplifiers shape the signals to approximate square waves to drive the Gilbert-cell mixers. The inphase signal (at half the local oscillator frequency) is further divided by four for the prescaler output.

Prescaler
The prescaler output, PRE_OUT, is buffered and swings typically $0.35 \mathrm{Vp}-\mathrm{p}$ with a $10 \mathrm{k} \Omega$ and 6 pF load. It can be AC coupled to the input of a frequency synthesizer.

Master Bias

During normal operation, ENABLE should be above VCC -0.4 V . Pulling the ENABLE input low shuts off the master bias and reduces the circuit current to typically $2 \mu \mathrm{~A}$. The master bias section includes a bandgap reference generator and a PTAT (Proportional To Absolute Temperature) current generator.

Applications Information

Figure 3 shows the implementation of a resonant tank circuit. The inductor, two capacitors, and a dual varactor form the oscillator's resonant circuit. In Figure 3, the oscillator frequency ranges from 130 MHz to 160 MHz . To ensure reliable start-up, the inductor is directly connected across the local oscillator's tank ports. The two 33 pF capacitors affect the Q of the resonant circuit. Other values may be chosen to meet individual appli-

Figure 3. Typical Resonant Tank Circuit
cation requirements. The oscillation frequency can be determined using the following formula:

$$
f_{o}=\frac{1}{2 \pi \sqrt{L_{E Q} C_{E Q}}}
$$

where

$$
\mathrm{C}_{\mathrm{EQ}}=\frac{1}{\frac{1}{\mathrm{C} 1}+\frac{1}{\mathrm{C} 2}+\frac{2}{\mathrm{C}_{\text {VAR }}}}+\mathrm{C}_{\mathrm{STRAY}}
$$

and

$$
\mathrm{L}_{E Q}=\mathrm{L}+\mathrm{L}_{\text {STRAY }}
$$

where CSTRAY $=$ parasitic capacitance and LstRAY $=$ parasitic inductance.
To alter the oscillation frequency range, change the inductance, the capacitance, or both. For best phasenoise performance, keep the Q of the resonant tank as high as possible:

$$
\mathrm{Q}=\mathrm{R}_{\mathrm{EQ}} \sqrt{\frac{\mathrm{C}_{\mathrm{EQ}}}{\mathrm{~L}_{\mathrm{EQ}}}}
$$

where $\mathrm{REQ} \approx 10 \mathrm{k} \Omega$ (Figure 2).
The oscillation frequency can be changed by altering the control voltage, VCTRL.

3V, Ultra-Low-Power Quadrature Demodulator

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
6 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1995 Maxim Integrated Products
Printed USA NIAXIMI is a registered trademark of Maxim Integrated Products.

