Complete 10／s CMOS 12－Bit ADC

The MAX172 is a complen
The MAX172 is a complete 12 －Bit analog－to－digita consumption，and an on－chip voltage reference．Th conversion time is $10 \mu \mathrm{~s}$ ．The buried zener reference provides low drift and low noise performance．
External component requirements are limited to only decoupling capacitors for the power supply and refer－ ence voltages．On－chip clock circuitry is also included which can either be driven from an external source， or in stand－alone applications，can be used with a crystal．
The MAX172 uses a standard microprocessor interface architecture．Three－state data outputs are controlled access and bus release times of 90 and 75 ns respec－ tively ensure compatibility with most popular micro－ processors without resorting to wait states．

Applications
Digital Signal Processing（DSP） High Accuracy Process Contro High Speed Data Acquisition Electro－Mechanical Systems

Functional Diagram

－12－Bit Resolution and Linearity

10 1 s Conversion Time

－No Missing Codes

－On－Chip Voltage Reference

－90ns Access Time

－215mW Max Power Consumption
－24－Lead Narrow DIP Package
－Pin－for－Pin AD7572 Replacement
Ordering Information

PART	TEMP．RANGE	PACKAGE＊	ERROR
MAX172ACNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 / \mathrm{LSB}$
MAX172BCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 \mathrm{LSB}$
MAX172ACWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide S．O	$\pm 1 / 2 \mathrm{LSB}$
MAX172BCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX172CC／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{\circ}$	+1 LSB
MAX172AING	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$+1 / \mathrm{LSB}$
MAX172BING	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	+1 LSB
MAX172AMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	$+1 / \mathrm{LSB}$
MAX172BMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	+1 LSB

All devices－ 24 lead packages
Consult tactory tor dice specit

Pin Configuration

ハリスイノVI

Complete 10us CMOS 12-Bit ADC

absolute maximum ratings

$V_{D D}$ to DGND
$V_{S S}$ to DGND
AGND to DGND
AIN to AGND
Digital Input Voltage to DGND
(Pins 17, 19-21)
Digital Output Voltage to DGND
(pins 4-11, 13-16, 18, 22)
$-0.3 V$ to $+7 V$
$\ldots+0.3 V$ to $-17 V$
$-0.3 V-15 D+0.3 V$
$\ldots-15 V+15 \mathrm{~V}$
$-0.3 V, V_{D D}+0.3 V$
$-0.3 V, V_{D O}+0.3 V$

Operating Temperature Ranges	
MAX172XC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX172XI	$25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX172XM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Power Dissipation (any Package) to $+75^{\circ} \mathrm{C} \ldots . .1000 \mathrm{~mW}$	
Derates Above $+75^{\circ} \mathrm{C}$ by	OmW
Lead Temperature (Soldering 10 seconds)	

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and Tunctional operation of the device at these or any other conditions above those indicated in the operationat se
implied Exposure to absolute maximum ratings conditions for extended periods may affect device reliabitty.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, V_{S S}=-12 \mathrm{~V}\right.$ or $-15 \mathrm{~V} \pm 5 \%$; Slow Memory Mode; $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ unless otherwise noted, $f_{C L K}=1.25 \mathrm{MHZ}$.)

ELECTRICAL CHARACTERISTICS（Continued）
$\left(V_{\text {OO }}=+5 \mathrm{~V}+5 \%, \mathrm{~V}_{\mathrm{SS}}=-12 \mathrm{~V}\right.$ or $-15 \mathrm{~V} \pm 5 \%$ ；Slow Memory Mode；

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	Max	UNITS
CONVERSION TIME						
MAX 172	${ }^{\text {coonv }}$	Synchronous（ 12.5 clock cycles） Asynchronous（ 12 to 13 clock cycles）	9.6		$\begin{gathered} 10 \\ 10.4 \end{gathered}$	$\mu \mathrm{S}$
POWER SUPPLY REJECTION						
$\mathrm{V}_{\text {DD }}$ Only		FS Change， $\mathrm{V}_{\mathrm{SS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V		$\pm 1 / 2$		LSB
$\mathrm{V}_{\text {SS }}$ Only		FS Change， $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \%$ to $+5 \%$		$\pm 1 / 8$		LSB
POWER REQUIREMENTS						
$V_{D D}$		$\pm 5 \%$ for Specified Performance		5		V
$\mathrm{V}_{\text {SS }}$（Note 8）		$\pm 5 \%$ for Specified Performance		－12 or－15		V
I_{DC}		$\overline{\overline{C S}}=\overline{\overline{R D}}=V_{\text {DD }} . A I N=5 \mathrm{~V}$		5	7	mA
$\mathrm{I}_{5 S}$		$\overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{AlN}=5 \mathrm{~V}$		8	12	mA
Power Dissipation		$V_{\text {DD }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$		145	215	mW

Note 1：Typical change over temp is +1 LSB．
Note 2： $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}, \mathrm{FS}=+5.000 \mathrm{~V}$ ，Ideal last code transition $=\mathrm{FS}-3 / 2 \mathrm{LSB}$
Note 3：Full Scale TC $=\Delta F S / \Delta T$ ，where $\Delta F S$ is full scale change from $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MIN }}$ or $T_{\text {MAX }}$
Note 4：Includes internal reference drift．

Note 6：Output current should not change during conversion．
Note 7：Guaranteed by design，not subject to test．
Note 8：Functional operation at $\mathrm{V}_{\mathrm{SS}}=-12 \mathrm{~V}+5 \%$ is guaranteed by testing offset error and full scale error．
TIMING CHARACTERISTICS（Note 9）
$\left(V_{D O}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-12 \mathrm{~V}\right.$ or $-15 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$ unless otherwise noted．）

Parameter	SYMBOL	CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MAX172C／I		MAX172M		UNITS
			MIN	TYP	Max	MIN	MAX	MIN	MAX	
$\overline{C S}$ to RO Setup Time	t_{1}		0			0		0		ns
$\overline{\mathrm{RD}}$ to BUSY Delay	t_{2}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		90	190		230		270	ns
Data Access Time（Note 10）	t_{3}	$\begin{aligned} & C_{L}=20 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{gathered} 90 \\ 125 \end{gathered}$		$\begin{aligned} & 110 \\ & 150 \end{aligned}$		$\begin{aligned} & 120 \\ & 170 \end{aligned}$	ns
$\overline{\text { ṘD Pulse Width }}$	t_{4}		t_{3}			t_{3}		t_{3}		
$\overline{\mathrm{CS}}$ to RD Hold Time	t_{5}		0			0		0		ns
Data Setup Time After BUSY Note（10）	t_{6}				70		90		100	ns
Bus Relinquish Time（Note 11）	t_{7}		20		75	20	85	20	90	ns
HBEN to $\overline{\text { RD }}$ Setup Time	t_{8}		0			0		0		ns
HBEN to RD̄ Hold Time	t_{9}		0			0		0		ns
Delay Between Read Operations	t_{10}		200			200		200		ns

Note 9：Timing specifications are sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance．All input control signals are specified with
and
11． 0.8 V or 2.4 V ．
For additional information on using the MAX172 please refer to MAX162 data sheet．

Complete 10رs CMOS 12-Bit ADC

