ノVIXINVI CMOS 12－Bit A／D Converters With Track－and－Hold

Ceneral Description
The MAX163，MAX164，and MAX167 are complete
CMOS sampling 12－bit analog－to－digital converters
（ADCs）that combine an on－chip track－and－hold and
voltage reference along with high conversion speed
and low power consumption．A conversion time of
$8.33 \mu \mathrm{~s}$ includes settling time for the track－and－hold．
An internal buried zener reference provides low drift
with low noise．
The three A／Ds differ only in their analog input range．
The MAX163 accepts 0V to＋5V inputs，the MAX164
accepts－5V to＋5V inputs，and the MAXX67＇s input
range is－2．5V to＋2．5V．External components are
limited only decoupling capacitors for the power
supply and reference voltages．On－chip clock circuitry
can either be driven from an external clock source or
a crystal．
The MAX163／164／167 employ a standard micro－
processor interface．Three－state data outputs can be
configured for 8－or 12 －bit data buses．Data access
and bus release timing specs are compatible with
most popular microprocessors without resorting to
wait states．
Digital Signal Processing（DSP）
Audio and Telecom Processing
High Accuracy Process Control
High Speed Data Acquisition

Functional Diagram

Maxim Integrated Products 1
ハVIス1／VI
Call toll free 1－800－998－8800 for free samples or literature．
12－Bit Resolution
8．33 $\mu \mathrm{s}$ Conversion Time
Internal Analog Track－Hold
6MHz Full Power Bandwidth
On－Chip Voltage Reference
High Input Resistance（500M Ω ）
100ns Data Access Time
180mW（Max）Power Consumption
AD7572／MAX162／MAX172 Plug－In Replacement
24 Lead Narrow DIP and SO Packages
\quad Ordering Information

PART	TEMP．RANGE	PACKAGE	ERROR
MAX167ACNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 / 2 \mathrm{LSB}$
MAX167BCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 \mathrm{LSB}$
MAX167CCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 \mathrm{LSB}$
MAX 167 ACWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	$\pm 1 / 2 \mathrm{LSB}$
MAX167BCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX167CCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX167AEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SO	$\pm 1 / \mathrm{LSB}$
MAX167BEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX167CEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX167CC／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊	$\pm 1 \mathrm{LSB}$
MAX167AENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 / 2 \mathrm{LSB}$

＊Consult factory for dice specifications Ordering information continued on last page． Pin Configuration

L9ト／t9／／E9LXVW

CMOS 12－Bit A／D Converters

With Track－and－Hold

ELECTRICAL CHARACTERISTICS（continued）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
REFERENCE							
$\mathrm{V}_{\text {REF }}$ Output Voltage		$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		－4．98	－5．00	－5．02	V
$V_{\text {ReF }}$ Output Tempco （Note 6）		MAX16XB，MAX16XA MAX16XC				25 45	ppm $/{ }^{\circ} \mathrm{C}$
Reference Load Sensitivity		$\Delta F S / \Delta I_{\text {REF }}$, I REF Load Change： 0 to 5 mA			0.2	1	LSB／mA
Output Sink Current						5	mA
LOGIC INPUTS							
Input Low Voltage．	$\mathrm{V}_{\text {LL }}$	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \mathrm{HBEN}, \mathrm{CLK}$ IN				0.8	V
Input High Voltage	V_{H}	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \mathrm{HBEN}, \mathrm{CLK}$ IN		2.4			V
Input Capacitance （Note 5）	CIN	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \mathrm{HBEN}, \mathrm{CLK}$ IN				10	pF
Input Current	In	$V_{1 N}=0 V$ to $V_{D D}$	$\begin{aligned} & \overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \mathrm{HBEN} \\ & \mathrm{CLK} \text { IN } \end{aligned}$			10 20	$\mu \mathrm{A}$
LOGIC OUTPUTS							
Output Low Voltage	VoL	$\begin{aligned} & \mathrm{D} 11-\mathrm{D} 0 / 8, \overline{\mathrm{~B} U S Y} \\ & \mathrm{I}_{\mathrm{SINK}}=1.6 \mathrm{~mA} \end{aligned}$	CLK OUT			0.4	V
Output High Voltage	V OH	$\begin{aligned} & \text { D11-D0/8, BUSY } \\ & \mathrm{I}_{\text {SOURCE }}=200 \mu \mathrm{~A} \end{aligned}$	CLK OUT	4			v
Three－State Leakage Current	IL	D11－D0／8， $\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$				± 10	$\mu \mathrm{A}$
Three－State Output Capacitance	Co	（Note 5）				15	pF
POWER REQUIREMENTS							
Positive Supply Voltage	$V_{D D}$	$\pm 5 \%$ For Specified Performance			5		V
Negative Supply Voltage	$\mathrm{V}_{\text {SS }}$	$\pm 5 \%$ For Specified Performance		－12		－15	V
Positive Supply Rejection		$\begin{aligned} & \text { FS Change, } V_{\text {SS }}=-15 \mathrm{~V} \text { or }-12 \mathrm{~V} \\ & \mathrm{~V}_{\text {DD }}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$			$\pm 1 / 2$		LSB
Negative Supply Rejection		$\begin{aligned} & \text { FS Change, } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-14.25 \mathrm{~V} \text { to }-15.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-11.4 \mathrm{~V} \text { to }-12.6 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \pm 1 / 8 \\ & \pm 1 / 8 \end{aligned}$		LSB
Positive Supply Current	1 ld	$\overline{C S}=\overline{\mathrm{RD}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{AIN}=5 \mathrm{~V}$			4	6	mA
Negative Supply Current	$\mathrm{I}_{\text {ss }}$	$\overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{AlN}=5 \mathrm{~V}$			7	10	mA
Power Dissipation		$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-12 \mathrm{~V}$			104	150	mW

Note 1：Typical change over temp is ± 1 LSB．
Note 2：Ideal last code transition $=\mathrm{FS}-3 / 2$ LSB，adjusted for offset
Note 3：Full Scale Tempco $=\Delta F S / \Delta T$ ，where $\Delta F S$ is full scale change from $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MIN }}$ or $T_{\text {MAX }}$ ．
Note 4：$V_{I N}$ must not exceed $V_{D D}$ for specified accurac
Note 6：$V_{\text {REF }}$ Tempco $=\Delta V_{\text {REF }} / \Delta T$ ，where $\Delta V_{\text {REF }}$ is reference voltage change from $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MIN }}$ or $T_{\text {MAX }}$

CMOS 12－Bit A／D Converters With Track－and－Hold

MAX163／164／167

TIMING CHARACTERISTICS（See Figures 9－12）
$V_{D D}=+5 \mathrm{~V} \mathrm{~V}_{S S}=-12 \mathrm{~V}$ or -15 V ，

PARAMETER	SYMBOL （Figures 9－12）	CONDITIONS	$\begin{aligned} & T_{A}=25 \\ & \text { MIN }^{2} \text { TYP } \end{aligned}$	${ }^{\circ} \mathrm{C}$	MAX16XXC／E MIN MAX	MAX16XXM MIN MAX	UNITS
$\overline{\mathrm{C}}$ S to $\overline{\mathrm{RD}}$ Setup Time	t_{1}		0		0	0	ns
RD to BUSY Delay （Note 8）	t_{2}	$\mathrm{CL}=50 \mathrm{pF}$	80	170	220	260	ns
Data Access Time （Notes 8，9）	t_{3}	$\mathrm{CL}=100 \mathrm{pF}$	50	100	130	150	ns
$\overline{\mathrm{RD}}$ Pulse Width	t_{4}		100		130	150	ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Hold Time	t_{5}		0		0	0	ns
Data Setup Time After $\overline{\text { BUSY（Notes 8，9）}}$	t_{6}		40	80	105	120	ns
Bus Relinquish Time （Notes 8，10）	t_{7}		30	50	65	75	ns
HBEN to $\overline{\mathrm{RD}}$ Setup Time	t_{8}		0		0	0	ns
HBEN to $\overline{\mathrm{RD}}$ Hold Time	t_{9}		0		0	0	ns
Delay Between READ Operations	t_{10}		200		200	200	ns
Delay Between Conversions	t_{11}		1		1	1	$\mu \mathrm{s}$
Aperture Delay	t_{12}	Jitter＜50ps	25				ns
CLK to BUSY Delay	t_{13}		80	170	220	260	ns

Note 7：All input control signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \% \mathrm{to} 90 \%$ of $+5 \mathrm{~V})$ and timed from a voltage level of +1.6 V Note 8：This specification is 100% production tested．
Note 9： t_{3} and t_{6} are measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8 V or Note 10： t_{7} is
ote 10： t_{7} is defined as the time required for the data lines to change 0.5 V when loaded with the circuits of Figure 2

CMOS 12－Bit A／D Converters With Track－and－Hold

Pin Description

PIN	NAME	FUNCTION
1	AIN	Sampling Analog Input， MAX163： 0 V to +5 V Unipolar MAX164：$\pm 5 \mathrm{~V}$ Bipolar MAX167：$\pm 2.5 \mathrm{~V}$ Bipolar
2	$V_{\text {ReF }}$	－5．00V Reference Output
3	AGND	Analog Ground
4－11	D11－D4	Three－State Data Outputs
12	DGND	Digital Ground
13－16	D3／11－D0／8	Three－State Data Outputs
17	CLK IN	Clock Input．An external TTL compat－ ible clock may be connected，or a crystal may be connected between CLK IN and CLK OUT．
18	CLK OUT	Clock Output．An inverted CLK IN signal appears at this pin．
19	hben	High Byte Enable Input．Used to multi－ plex the internal 12 －bit conversion result into the lower order outputs （D7－D0／8）．HBEN also disables conver－ sion starts when HIGH．
20	RD	READ Input．This active low input starts a conversion when $\overline{\mathrm{CS}}$ and HBEN are low．RD also enables the output drivers when CS is low．
21	cs	The CHIP SELECT Input must be low for the ADC to recognize $\overline{R D}$ and HBEN inputs．
22	BUSY	The BUSY Output is low when a con－ version is in progress．
23	$V_{\text {SS }}$	Negative Supply，-15 V or -12 V
24	$V_{D D}$	Positive Supply，+5 V

The MAX163／164／167 use successive approximation and input track－and－hold circuitry to convert an analog signal to a series of 12 －bit digital output codes．The control logic provides easy interface to microprocessors so that most applications require only passive components to perform analog－to－digital 3 shows the＂hald＂capacitor is requir simplest operational configuration．

Analog Input－Track－and－Hold In Figure 4，the equivalent input circuit illustrates the In Figure 4，the equivalent input circuit illustrates the sampling architecture of the ADC＇s analog compara－
tor．The comparator＇s input capacitance acts as the tor．The comparator＇s input capacitance acts as the the input signal with every A／D conversion（but NOT every clock cycle）．The capacitance is charged through an internal $1 \mathrm{k} \Omega$ protection resistor in series with the input．
To an input signal，AIN appears as a capacitor switch－ ing between analog ground and the input signal． Between conversions（BUSY high and RD or CS or HBEN high）the capacitor is connected to AIN．When a conversion starts，the capacitor disconnects from
AIN，thus sampling the input，and is internally dis－ charged．At the end of the conversion it reconnects to the input and charges to the input signal．The loading effect of AIN on the analog signal is such that a high speed input buffer is usually NOT needed．This is because the A / D disconnects from the input during the actual conversion．

a．High－Z to $\mathrm{VOH}^{\left(t_{3}\right)}$ and $\mathrm{VOL}_{\text {to }} \mathrm{VOH}$（ t_{6} ）
b．High－Z to VOL $\left(\mathrm{t}_{3}\right)$ and $\mathrm{VOH}_{\mathrm{H}}$ to $\mathrm{VOL}_{\mathrm{O}}\left(\mathrm{t}_{6}\right)$
Figure 1．Load Circuits for Access Time

Figure 2．Load Circuits for Bus Relinquish Time

CMOS 12－Bit A／D Converters
 With Track－and－Hold

Figure 3．MAX163／164／167 Operational Diagram
The track－and－hold enters its＂tracking＂mode when the ADC is deselected（CS high）and BUSY is high hersion is initiated．The variation in this delay from one conversion to the next（aperture jitter）is less than 50 ps．Figures 9 through 12 detail the track－and－ hold and interface timing for the various interface modes．The internal track－and－hold control logic is shown in Figure 5.
The time required for the track－and－hold to acquire an input signal is a function of how quickly the input apacite is charged．If the input signal＇s source impedance is high，the acquisition time lengthens and more time must be allowed between conversions Acquisition time is calculated by
$t_{A C Q}=10\left(R_{S}+R_{I N}\right) 20 p F$（but never less than $1 \mu \mathrm{~s}$ ）
Where $R_{I N}=1 \mathrm{k} \Omega$ ，and $R_{S}=$ source impedance of the ADC＇s input signal．

Figure 4．Equivalent Input Circuit

Input Bandwidth

The A／D＇s input tracking circuitry has excellent large signal and wide bandwidth behavior．It is not slew mited like many other ADC track－and－holds．Remark ably，the MAX163／164／167 track－and－hold＇s full powe bandwith is typically 6 MHz ．This makes it possible to digitize high speed transient events and to measure periodic signals whose bandwidth exceeds the ADC＇s
sample rate $(>100 \mathrm{kHz})$ by using under sampling techniques．It is important to note here that if unde sampling is used to measure high frequency signals special care must be taken to avoid aliasing errors Without adequate input filtering，high frequency noise may be aliased into the measurement band．

Input Protection
internal protection diodes，which clamp the analog input to $V_{D D}$ and $V_{R E F}$ ，work with an internal series resistance to allow over drives of up to $\pm 15 \mathrm{~V}$ at AIN

Figure 5．Track－Hold Internal Control Logic

CMOS 12-Bit A/D Converters

With Track-and-Hold

with no risk of damage to the A/D. However, for accurate conversions near full scale (MAX163 and MAX164 only), AIN should not exceed $V_{D P}$ because A/D accuracy is affected while the protection diodes are even slightly turned on

Starting a Conversion

The ADC is controlled by the CS, RD and HBEN nputs. The track-and-hold enters Hold Mode and conversion starts at the falling edge of CS and RD while HBEN is low. The BUSY output goes low as soon as the conversion starts. On the falling edge BUSY goes high and the conversion result is latched into three-state output buffers.

Internal/External Clock
Figure 6 shows the MAX163/164/167 clock circuitry. The capacitive load on the CLK OUT pin must be minimized to avoid digital coupling of the CLK IU external clock source drives CLK IN, then CLK OUT should be left open. Acceptable external clock duty cycles are between 20% and 80%, so a precise square wave is not required. If the internal oscillator is used crystal or ceramic resonator is connected between

NOTES:
xtaL $=1.5 \mathrm{MHz}$ Cbystal /CERamic resanato

Figure 6. Internal Clock Circult
Internal Reference
The MAX163/164/167 have a -5.00 V buried zener reference which biases the internal DAC. The reference output is available at $V_{\text {REF }}$ (Pin 2) and should be bypassed to AGND (Pin 3) with a $47 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor This minimizes noise and maintains a low impedance at high frequencies. A resistor should NOT be con internal reference output buffer can sink up to 5 mA

Digital Interface
Clock and Control Synchronization For best analog performance, the MAX163/164/167 control inputs as shown in Figure 7 , with at leas

00ns separating convert start from the nearest clock edge. This ensures that transitions at CLK IN and CLK OUT do not couple to the analog input and ge sampled by the track-and-hold. The magnitude of thi eedthrough is only a few millivolts, but if CLK and convert start (CS and RD) are asynchronous, fre and convert signals may increase the apparent inpu noise.
When the clock and convert signals are synchronized small endpoint errors (offset and full scale) are the most that can be generated by clock feedthrough. Even these errors (which can be trimmed out) can be eliminated by ensuring that the start of a conversion RD and CS falling edge) does not occur within 100ns even without observing this quideline the MAX163 164/167 are still compatible with either the MAX162/172 or the MX7572 synchronization modes, with no in crease in linearity error. This means that either the
falling or rising edge of CLK IN may be near RD's falling edge.

Output Data Format
The 12 data bits can be output either in full paralle or as two 8 -bit bytes. The data bus output format shown in Table 1. To obiain parallel output for 16-b processors, HBEN is permanently tied low. The output data, DB11-DB0, is then right justified, i.e., DB0, the LSB, is the right most bit in the 16-bit word
For a two byte read, outputs D7 through DO/8 are used. Byte selection is controlled by HBEN which multiplexes the data outputs. When HBEN is low, the HBEN is high, the upper 4 bits are presented a DBO-DB3 with the leading 4 bits low in locations D4-D7. Note that the 4 MSBs always appear at D11-D whenever the outputs are enabled, regardless of the state of HBEN.

Timing And Control

Conversion start and data read operations are con Figure 8 shows the logic equivalent for the conversio and data output control circuitry. A logic low is required on all three inputs to start a conversion an once the conversion is in progress, it cannot be version cycle.
Two modes of operation are outlined in the timing diagrams of Figures $9-12$. Slow Memory Mode is intended for processors that can be forced into
WAIT state during the ADC's conversion time. ROM Mode is for processors that cannot be forced into a wait state. In both modes, a processor READ opera tion to the ADC address starts the conversion. In the ROM mode, a second READ operation accesses the conversion result.

CMOS 12-Bit A/D Converters With Track-and-Hold

MAX163/164/167

Figure 7. $\overline{R D}$ and CLK IN for Synchronous Operation
Table 1. Data Bus Output, $\overline{C S} \& \overline{R D}=$ LOW

	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 10	Pin 11	Pin 13	Pin 14	Pin 15	Pin 16
MNEMONIC*	D11	D10	D9	D8	D7	D6	D5	D4	D3/11	D2/10	D1/9	D0/8
HBEN = LOW	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
HBEN $=\mathrm{HIGH}$	DB11	DB10	DB9	DB8	LOW	LOW	LOW	LOW	DB11	DB10	DB9	DB8

Figure 8. Logic Equivalent for $\overline{R D}, \overline{C S}$ and HBEN Inputs

CMOS 12-Bit A/D Converters With Track-and-Hold

Parallel Read (HBEN = LOW)

 See Figure 9 and Table 2. Taking CS and RD starts the conversion. BUSY remains low while the conversion is in progress. The PREVIOUS (old) result appears at the digital outputs until the end of the conversion when D11-D0/8.Slow Memory Mode, Two Byte Read
See Figure 10 and Table 3. Outputs D7-D0/8 are used See Figure 10 and Table 3. Outputs D7-D0/8 are used
for a two byte read. The start and read operations for he 8 LSBs are identical to the Slow Memory Mode Parallel Read. A second read operation with HBEN high places the 4 MSBs, with 4 leading zeros, on data
outputs D7-D0/8. This second read operation does not start another conversion since HBEN is high.

ROM Mode, Parallel Read (HBEN = LOW)
See Figure 11 and Table 4. ROM Mode avoids using processor wait states. A conversion starts with a read openversion appear at D11-D0/8. The data from the first read in a sequence is often disregarded when this interface mode is used. A second read accesses the results of the first conversion and also starts new conversion. The time between successive READ must be longer than the MAX163/164/167 conversion times.

ROM Mode, Two Byte Read

See Figure 12 and Table 5. As in the Slow Memor Mode, only D7-D0/8 are used for two byte reads. A conversion starts with a read operation with low. At this point the data outputs contain the 8 LSB from the PREVIOUS conversion. Two more read operations are needed to access the conversion MSBS with first occurs with HBEN high, where the俍 with HBEN low zeros are accessed. starts a new conversion.

Application Hints

Initialization After Power Up
In some applications it may be desirable to remove power from the ADC during periods of inactivity. Th is increasingly common in battery powered systers a read operation with HBEN low and ignore the data outputs.

Digital Bus Noise
If the data bus connected to the ADC is active during If the data bus connected to the ADC is active during a conversion, errors can be caused by coupling from
the data pins to the ADC comparator. Using the Slow Memory Mode avoids this problem by placing the processor in a wait state during the conversion. In the ROM Mode, if the data bus is going to be active
during the conversion, the bus should be isolated from the ADC using three-state drivers.

Figure 9. Slow Memory Mode, Parallel Read Timing Diagram
Table 2. Slow Memory Mode, Parallel Read Data Bus Status

Data Outputs	D11	D10	D9	D8	D7	D6	D5	D4	D3/11	D2/10	D1/9	D0/8
Read	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB 1	DB 0

CMOS 12－Bit A／D Converters With Track－and－Hold

Figure 10．Slow Memory Mode，Two Byte Read Timing Diagram
Table 3．Slow Memory Mode，Two Byle Read Data Bus Status
Table 3．Slow Memory Mode，Two Byle Read Data Bus Status

Data Outputs	D 7	D6	D5	D4	D3 $/ 11$	D $2 / 10$	D $1 / 9$	D0 $/ 8$
First Read	DB7	DB6	DB5	DB4	DB3	DB2	DB 1	DB0
Second Read	LOW	LOW	LOW	LOW	DB11	DB10	DB9	DB8

Figure 11．ROM Mode，Parallel Read Timing Diagram
10

CMOS 12-Bit A/D Converters

With Track-and-Hold
Table 4. ROM Mode, Parallel Read Data Bus Status

Data Outpuls	D11	D10	D9	D8	D7	D6	D5	D4	D3/11	D2/10	D1/9	D0/8
First Read (Old Data)	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Second Read	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

Figure 12. ROM Mode, Two Byte Read Timing Diagram
Table 5. ROM Mode, Two Byte Read Data Bus Status

Data Outputs	D7	D6	D5	D4	D3/11	D2/10	D1/9	D0/8
First Read (OId Data)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Second Read	LOW	LOW	LOW	LOW	DB11	DB10	DB9	DB8
Third Read	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

In ROM Mode, considerable digital noise is generated in the ADC when RD or CS go high and the output data drivers are disabled after a conversion is started This noise can affect the ADC comparator and cause large errors if it coincides with the time the SAR is latching a comparator decision. To avoid this problem RD and CS should be active for less than one clock cycle. If this is not possible, $\overline{R D}$ or CS must go high
at a rising edge of CLK IN, since the comparator output is always latched at falling edges of CLK IN.

Layout, Grounding, Bypassing
For best system performance printed circuit boards should be used. Wire wrap boards are not recom mended. The layout of the board should ensure tha digital and analog signal lines are kept separated rom each other as much as possible. Care should be ines parallel to one another or digital lines under neath the ADC package.

CMOS 12－Bit A／D Converters With Track－and－Hold

Figure 13 shows the recommended system ground connections．A single point analog STAR ground should be established at Pin 3 （AGND）separate from （DGND）ground．All other analog grounds and Pin 1 （DGND）should be connected to this STAR ground nected here．The ground return to the power supply from this STAR ground should be low impedance and as short as possible for noise－free operation．
The high speed comparator in the ADC is sensitive to high frequency noise in the $V_{D D}$ and $V_{S S}$ power sup plies．These supplies should be bypassed to the ana－ og STAR ground with $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ bypass capaci－ best Supply noise reiection if the minimum length fo very noisy，a small（4．7－200）resistor can be con nected as shown in Figure 13 to filter this noise．

Figure 13．Power Supply Grounding Practice
Gain and Offset Adjustment
The plot in Figure 14 graphs the nominal unipola nput／output transfer function of the MAX163．Cod ransitions occur half way between successive intege LSB values．Output coding is natural binary with LSB $=1.22 \mathrm{mV}$（ $5 \mathrm{~V} / 4096$ ）．Figure 15 shows the bipola utput coding is offset binary． is offset binary
in applications where gain（full scale range）adjust ment is required，the connection shown in Figure both offset and full scale range need adjustment，th circuit in Figure 17 is recommended．Offset should be adjusted before gain．For the MAX163（ 0 V to +5 V inpu range），apply $+1 / 2$ LSB（ 0.61 mV ）to the analog inpu and adjust R12 so the digital output code changes eetween 0000 000 0 adjust full scale，apply FS $-1-1 / 2$ LSB（ 4.99817 V ）and 11111110 and 11111111 1111．There may be slight interaction between adjustments．If an input gain o two is acceptable，the connection in Figure 17 can be simplified by removing R5 and R6．

Figure 14．MAX163 Unipolar Transfer Function

Figure 15．MAX164／167 Bipolar Transfer Function
To adjust bipolar offset（MAX164 $\pm 5 \mathrm{~V}$, MAX167 $\pm 2.5 \mathrm{~V}$ ）， apply $+1 / 2$ LSB（ 1.22 mV for MAX164， 0.61 mV fo put code flicker between 10000000 ust 0000 0001．For full scale，apply FS－1－1／2 LSB $(+4.99634 \mathrm{~V}$ for the MAX164， 2.49817 V for the MAX167） to the input and adjust R8 so the output code flicker between 1111111110 and 11111111 1111．There may be some interaction between these adjustments．

CMOS 12-Bit A/D Converters With Track-and-Hold

Figure 16. Trim Circuit for Gain Only ($\pm 0.5 \%$)
Dynamic Performance
High speed sampling capability and 100 kHz throughput make the MAX163/164/167 ideal for wideband signal processing. To support these and other related applications, FFT' (Fast Fourier Transform) test techniques are used to guarantee the A/D's dynamic requency response, distortion, and noise at the rated distortion sinewave to the ADC input and recording digital conversion results for a specified time. The data is then analyzed using an FFT algorithm which determines its spectral content. Conversion errors are en seen as spectral elements outside of the fundamental input frequency
A-to-D converters have traditionally been evaluated by specifications such as Zero and Full Scale Error
 or specifying performance with DC and slowly vary ing signals but are less useful in signal processing applications where the A/D's impact on the system transfer function is the main concern. The significance of various DC errors does not translate well to the dynamic case, so different tests are required

Figure 17. Offset ($\pm 20 \mathrm{mV}$) and Gain ($\pm 0.5 \%$) Trim Circuit

CMOS 12-Bit A/D Converters With Track-and-Hold

Figure 19. MAX167 Effective Bits vs. Input Frequency
Peak Harmonic or Spurious Noise The ratio of the fundamental RMS amplitude to the amplitude of the next largest spectral component (i he frequency band above DC and below one half the sample rate) is referred to as the Peak Harmonic (o Spurious) Noise. Usually this peak occurs at some exceptionally linear, it may occur only at a random peak in the ADC's noise floor.

Chip Topography

_Ordering Information (continued)

PART	TEMP. RANGE	PACKAGE*	ERROR
MAX167BENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	± 1 LSB
MAX167CENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	± 1 LSB
MAX167AMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	$\pm 1 / 2$ LSB
MAX167BMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	± 1 LSB
MAX167CMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	$\pm 1 \mathrm{LSB}$
MAX163BCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	± 1 LSB
MAX163CCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 \mathrm{LSB}$
MAX163BCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX163CCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	± 1 LSB
MAX163BEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX163CEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX163CC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice**	$\pm 1 \mathrm{LSB}$
MAX163BENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	± 1 LSB
MAX163CENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$\pm .1$ LSB
MAX163BMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	$\pm 1 \mathrm{LSB}$
MAX163CMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	+1 LSB
MAX164BCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	± 1 LSB
MAX164CCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	+1 LSB
MAX164BCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX164CCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX164BEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SO	$\pm 1 \mathrm{LSB}$
MAX164CEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SO	± 1 LSB
MAX164CC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice**	$\pm 1 \mathrm{LSB}$
MAX164BENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	± 1 LSB
MAX164CENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 \mathrm{LSB}$
MAX164BMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	± 1 LSB
MAX164CMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	± 1 LSB

