TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

JT6J15A-AS

ROW DRIVER FOR A DOT MATRIX LCD

The JT6J15A-AS is a 80 -channel-output row driver for a STN dot matrix LCD. The JT6J15A-AS features 28 V LCD drive voltage. The JT6J15A-AS is able to drive LCD panels with a duty ratio of up to 1/160.
As the JT6J15A-AS is equipped with a built-in voltage divider resistor, power supply operation amplifier, four and six-fold booster circuit, a contrast control circuit and a booster oscillator (oscillating capacitance is built in, and oscillating resistance is attached externally,) it is easy to structure a low power consumption LCD system by combining it with the JT6J14-AS column driver.

Features

- Display duty application : to $1 / 160$
- LCD drive signal : 80
- Data transfer : Two different styles of 1-bit bidirectional can be selected
(1) COM80 \leftarrow COM1
(2) COM80 \rightarrow COM1
- Operating temperature $:-20$ to $75^{\circ} \mathrm{C}$
- LCD drive output resistance : $1.5 \mathrm{k} \Omega \operatorname{Max}$ ($\mathrm{Vo}=12.8 \mathrm{~V}, 1 / 7$ to $1 / 14$ bias)
- Display-off function : When /DSPOF is "L", all LCD drive outputs (o1 to o80) remain at the VSS/V5 level
- LCD drive voltage : 11 to 28 V (maximum drive voltage $=30 \mathrm{~V}$)
- Power supply voltage : 2.7 to 5.5 V

Block Diagram 1

*1 $\cdots 80$ COM driver area

Block Diagram 2

Pin Assignment

Pad Coordinates

Scribe width
Chip size
Number of PAD
PAD size
Palette edge coordinates
: $80 \times 140 \mu \mathrm{~m}$
: $4790 \times 4850 \mu \mathrm{~m}$ (Including scribe width)
: 124 pcs
: $100 \mu \mathrm{~m}^{\square}$
1: -2355, -2355
Chip edge coordinates 1: -2395, -2425
2: -2395, 2425
3: 2395, 2425
4: 2395, -2425
[Unit: $\mu \mathrm{m}$]

No	Pad Name	X Point	Y Point
1	V_{4}	-1950	-2139
2	MS1	-1820	-2139
3	MS2	-1690	-2139
4	$V_{C C}$	-1560	-2139
5	C5B	-1430	-2139
6	C5A	-1300	-2139
7	C4B	-1170	-2139
8	C4A	-1040	-2139
9	VOUT4	-910	-2139
10	C3B	-780	-2139
11	C3A	-650	-2139
12	C2B	-520	-2139
13	C2A	-390	-2139
14	C1B	-260	-2139
15	C1A	-130	-2139
16	DIO2	0	-2139
17	LP	130	-2139
18	FR	260	-2139
19	/ DSPOF	390	-2139
20	$\mathrm{V}_{S S} / \mathrm{V}_{5}$	520	-2139
21	DIR	650	-2139
22	VDD	780	-2139
23	DIO	910	-2139
24	DI1	1040	-2139
25	DI2	1170	-2139
26	DI3	1300	-2139
27	DI4	1430	-2139
28	DI5	1560	-2139
29	DI6	1690	-2139
30	DI7	1820	-2139
31	LCK	1950	-2139
32	DIO1	2139	-1950
33	OSC1	2139	-1820

No	Pad Name	X Point	Y Point
34	OSC2	2139	-1690
35	OSC3	2139	-1560
36	080	2139	-1430
37	o79	2139	-1300
38	078	2139	-1170
39	077	2139	-1040
40	o76	2139	-910
41	075	2139	-780
42	074	2139	-650
43	073	2139	-520
44	o72	2139	-390
45	071	2139	-260
46	o70	2139	-130
47	069	2139	0
48	068	2139	130
49	067	2139	260
50	066	2139	390
51	065	2139	520
52	064	2139	650
53	063	2139	780
54	062	2139	910
55	061	2139	1040
56	060	2139	1170
57	059	2139	1300
58	o58	2139	1430
59	057	2139	1560
60	o56	2139	1690
61	o55	2139	1820
62	o54	2139	1950
63	053	1950	2139
64	o52	1820	2139
65	051	1690	2139
66	050	1560	2139

No	Pad Name	X Point	Y Point
67	049	1430	2139
68	048	1300	2139
69	047	1170	2139
70	046	1040	2139
71	045	910	2139
72	044	780	2139
73	043	650	2139
74	042	520	2139
75	041	390	2139
76	040	260	2139
77	o39	130	2139
78	o38	0	2139
79	037	-130	2139
80	o36	-260	2139
81	o35	-390	2139
82	o34	-520	2139
83	033	-650	2139
84	032	-780	2139
85	o31	-910	2139
86	o30	-1040	2139
87	o29	-1170	2139
88	o28	-1300	2139
89	027	-1430	2139
90	o26	-1560	2139
91	o25	-1690	2139
92	o24	-1820	2139
93	-23	-1950	2139
94	-22	-2139	1950
95	021	-2139	1820

No	Pad Name	X Point	Y Point
96	O20	-2139	1690
97	019	-2139	1560
98	018	-2139	1430
99	017	-2139	1300
100	016	-2139	1170
101	015	-2139	1040
102	014	-2139	910
103	013	-2139	780
104	012	-2139	650
105	011	-2139	520
106	010	-2139	390
107	O9	-2139	260
108	08	-2139	130
109	o7	-2139	0
110	06	-2139	-130
111	o5	-2139	-260
112	04	-2139	-390
113	o3	-2139	-520
114	o2	-2139	-650
115	01	-2139	-780
116	R_{1}	-2139	-910
117	R_{2}	-2139	-1040
118	R_{3}	-2139	-1170
119	VOBAK	-2139	-1300
120	V_{0} bias	-2139	-1430
121	V_{0}	-2139	-1560
122	V_{1}	-2139	-1690
123	V_{2}	-2139	-1820
124	V_{3}	-2139	-1950

Pin Functions

Pin Name	$1 / 0$	Functions	Level
01 to 080	Output	Output for LCD drive signal	$\begin{aligned} & \mathrm{V}_{0} \text { to } \\ & \mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{5} \end{aligned}$
DIO1, DIO2	$1 / 0$	Input / Output for shift data	
LP	Input	(Shift Clock Pulse) Input for shift clock pulse	
FR	Input	(Frame) Input for frame signal	
DIR	Input	(Direction) Input for data flow direction select	
/ DSPOF	Input	(Display Off) Display off pin "L": Display-off mode, (o1 to 080) remain at the $\mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{5}$ level. "H": Display-on mode, (o1 to 080) are operational.	
DIO to DI7	Input	Data bus: For contrast control usage Contrast adjustments are variable between 128 stages with the DI0 to DI5 and D17 data. DI6: When "H": Stops the booster's oscillation frequency and turns the power supply (VDD) to the contrast controller off When "L": Operates the booster circuit and contrast controller circuit	$V_{D D}$ to $\mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{5}$
LCK	Input	Data bus loading clock Synchronized during rising and loaded internally.	
R1 to R3	Input	Bias set-up pin (bias settings possible between 1 / 7 and 1/14)	
$\begin{aligned} & \text { OSC1 / } \\ & \text { OSC2 } \end{aligned}$	Input	Booster oscillation pin Resistors connected to these pins when the internal clock is operating ($100 \mathrm{k} \Omega$ between OSC1 and OSC2). The clock is input to OSC1 when the external clock is operating.	
OSC3	Output	Booster oscillating output pin The OCS3 pin is connected to another IC's OCS1 when the booster's oscillating frequency is shared with multiple connections.	
MS1 / MS2	Input	Master / slave switching pin	
CnA to CnB	-	Terminal for connecting external condensers ($n=1$ to 5) Connect a booster capacitor which allows about $\mathrm{C}_{2}=3.3 \mu \mathrm{~F}$ capacitance between CnA and CnB .	-
VOUT4	-	Booster voltage output pin (4-fold booster) Connect VOUT4 and V_{C} when use of 4 -fold booster.	
V_{CC}	-	LCD drive voltage pin (operation amplifier drive voltage, 6-fold booster terminal)	
$V_{\text {DD }}$	-	Power supply for internal logic	
$\mathrm{V}_{\text {SS }} / \mathrm{V}_{5}$	-	Power supply for internal logic	
VOBAK	-	Voltage amplifier circuit	
$\begin{gathered} \mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2} \\ \mathrm{~V}_{3}, \mathrm{~V}_{4} \\ \mathrm{~V}_{0} \text { bias } \end{gathered}$	-	Power supply for LCD drive circuit Connect an external capacitor which allows $\mathrm{C}_{1}=1.0 \mu \mathrm{~F}$ capacitance or high to AMP output.	

Relationship Between FR, Data Input and Output Levels

FR	Input Data (Dio1, Dio2)	/ Dspof	Output Level
H	L	H	V_{4}
H	H	H	V_{0} bias
L	L	H	V_{1}
L	H	H	$\mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{5}$
$($ Note $)$	$($ Note $)$	L	$\mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{5}$

Note: Don't Care

Data Input Format

DIR	Data Transfer Direction	Data Input terminals	
		DIO1	DIO2
H	$01 \rightarrow 080$	Input	Output
L	$080 \rightarrow 01$	Output	Input

Operation Amplifier Output Control Circuit

MS1	MS2	/ Stop	Mode	Booster Oscillations	Booster	V_{0} Output	$\mathrm{V}_{1}, \mathrm{~V}_{4}$ Output	$\mathrm{V}_{2}, \mathrm{~V}_{3}$ Output
L	(Note 1)	L	Slave mode (The booster circuit is driven and V_{CC} voltage generated. $\mathrm{V}_{0}, \mathrm{~V}_{1}$, V_{2}, V_{3} and V_{4} are supplied from an external source)	-	Booster stopped	Output CUT, PD Tr ON		Output CUT, PD Tr ON
		H		External clock	Booster stopped	Output CUT, PD Tr OFF (supplied from external source)		Output CUT, PD Tr ON
H	L	L	Master mode 1 (V_{0} is output from the V_{CC} voltage generating through driving the booster circuit. $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ and V_{4} are supplied from an external source)	Oscillations stopped	Booster stopped	Output CUT, PD Tr ON	Output CUT, PD Tr ON	Output CUT, PD Tr ON
		H		Oscillations operating	Booster operating	Output ON, PD Tr OFF (supplied to internal / external sources)	Output cut, PD Tr OFF (supplied from external source)	Output CUT, PD Tr ON
		L	Master mode 2 $V_{0}, V_{1}, V_{2}, V_{3}$ and V_{4} are output from the $V_{C C}$ voltage generating through driving the booster circuit.)	Oscillations stopped	Booster stopped	Output CUT, PD Tr ON		Output CUT, PD $\operatorname{Tr} \mathrm{ON}$
H	H	H		Oscillations operating	Booster operating	Output ON, PD Tr OFF (supplied to internal / external sources)		Output ON, PD Tr OFF (supplied to external source)

Note 1: Connect to V_{DD} or $\mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{5}$

Timing Diagram

- Use of JT6J15A-AS 2 pcs (DIR = " H ")

- Use of JT6J15A-AS 1 pc (DIR = "H")

Absolute Maximum Ratings
(Ensure that the Following Conditions are Maintained, $\mathbf{V}_{0} \geq \mathrm{V}_{1} \geq \mathrm{V}_{\mathbf{2}} \geq \mathrm{V}_{3} \geq \mathrm{V}_{\mathbf{4}} \geq \mathrm{V}_{\text {Ss }} / \mathrm{V}_{5}=\mathbf{0} \mathbf{V}$)

Characteristic	Symbol	Rating	Unit	Pin Name
Power Supply Voltage (1)	V_{DD}	-0.3 to 6.0	V	$\mathrm{~V}_{\mathrm{DD}}$
Power Supply Voltage (2)	V_{CC}	V_{DD} to 30.0	V	$\mathrm{~V}_{\mathrm{CC}}$
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	$($ Note 2$)$
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to 75	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$	-

Note 2: FR, LP, DIR, DIO1, DIO2, DIO to DI7, LCK, R1 to R3, / DSPOF

Electrical Characteristics

DC Characteristics 1
(Unless Otherwise Noted, $\mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~V}_{0}=11$ to 28 V , $\mathrm{Ta}=\mathbf{- 2 0}$ to $75^{\circ} \mathrm{C}$)

Item		Symbol	Test Circuit	Test	Condition	Min	Typ.	Max	Unit	Pin Name
Supply Voltage (1)		$V_{\text {DD }}$	-		-	2.7	5.0	5.5	V	$V_{\text {DD }}$
Supply Voltage (2)		V_{0}	-	$\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V} 0$		11	-	28	V	V_{0}
Supply Voltage (3)		V_{CC}	-	$\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V} 0$		11	-	28	V	V_{CC}
Input Voltage	"H" Level	V_{IH}	-	-		$\begin{gathered} 0.8 \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	-	$V_{D D}$	V	(Note 3)
	"L" Level	VIL	-	-		0	-	$\begin{gathered} 0.2 \\ V_{D D} \end{gathered}$		
Output Voltage	"H" Level	V_{OH}	-	$\mathrm{IOH}^{\text {O }}=-0.5 \mathrm{~mA}$		$\begin{aligned} & V_{D D} \\ & -0.5 \end{aligned}$	-	$V_{D D}$	V	DIO1, DIO2
	"L" Level	V_{OL}	-	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$		0	-	0.5		
Output Resistance	"H" Level	R_{OH}	-	$\mathrm{V}_{\text {OUT }}=\mathrm{V} 0-0.5 \mathrm{~V} \quad($ Note 4)		-	-	1.5	$\mathrm{k} \Omega$	01 to 080
	" M " Level	ROM	-	$\mathrm{V}_{\text {OUT }}=\mathrm{V} 1 \pm 0.5 \mathrm{~V} \quad($ Note 4)		-	-	1.5		
		R_{OM}	-	$\mathrm{V}_{\text {OUT }}=\mathrm{V} 4 \pm 0.5 \mathrm{~V} \quad$ (Note 4)		-	-	1.5		
	"L" Level	R_{OL}	-	$V_{\text {OUT }}=V_{S S} / V_{5}+0.5 \mathrm{~V}$ (Note 4)		-	-	1.5		
Input Current		IIL1	-	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{DD}		-1.0	-	1.0	$\mu \mathrm{A}$	(Note 3)
Output Voltage (with a 4-fold booster)		$\mathrm{V}_{\mathrm{O} 1}$	-	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	(Note 5)	17.64	-	-	V	V_{CC}
Output Voltage (with a 6-fold booster)		$\mathrm{V}_{\mathrm{O} 2}$	-	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \quad($ Note 5)		14.0	-	-		
Current Consumption		IDD OPE	-	$V_{D D}=5.0 \mathrm{~V}$	When operating (Note 6)	-	1.1	1.5	mA	$V_{D D}$
		-	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	When operating (Note 7)	-	1.2	1.8			
		IDD LEAK	-	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	When no operating	-	-	1.0	$\mu \mathrm{A}$	
		I_{0} bias OPE	-	$\mathrm{V}_{0}=15.0 \mathrm{~V}$	When operating (Note 8)	-	1.0	25		V_{0} bias
		ICc LEAK	-		When no operating (Note 9)	-	-	1.0		V_{CC}

Note 3: FR, LP, DIR, DIO1, DIO2, DIO to DI7, LCK, R1 to R3, / DSPOF
Note 4: $\mathrm{V}_{0}=12.8 \mathrm{~V}, 1 / 7$ to $1 / 14$ bias
Note 5: ILoad $=450 \mu \mathrm{~A}$, external $\mathrm{C}_{2}=3.3 \mu \mathrm{~F}$, when using COM $1 \mathrm{pc} \mathrm{Ta}=25^{\circ} \mathrm{C}$, OP-AMP ON
Note 6: Oscillation resistance $=100 \mathrm{k} \Omega, \mathrm{DC} / \mathrm{DC}$ ON, OP-AMP ON, $1 / 10$ bias, contrast Max $\mathrm{fLP}=11.2 \mathrm{kHz}, \mathrm{fFR}=35 \mathrm{~Hz}, \mathrm{fFP}=70 \mathrm{~Hz}, \mathrm{~V} \mathrm{DD}=5.0 \mathrm{~V}, 4$ booster, no load
Note 7: Oscillation resistance $=100 \mathrm{k} \Omega$, DC / DC ON, OP-AMP ON, $1 / 10$ bias, contrast Max $\mathrm{fLP}=11.2 \mathrm{kHz}, \mathrm{fFR}=35 \mathrm{~Hz}, \mathrm{fFP}=70 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, 6$ booster, no load
Note 8: LCD drive current: fFR = $35 \mathrm{~Hz}, \quad f L P=11.2 \mathrm{kHz}, \mathrm{fFP}=70 \mathrm{~Hz}, 1 / 10$ bias, no load, MS1 = "L", / STOP = "L"
Note 9: MS1 = "L", / STOP = "L"
f_{FP} : Screen switching frequency

DC Characteristics 2

Load Regulations Characteristics 1 … No Load / Max Load Offset

Offset Specified Value

	No Load		Max Load		Max Load (Reverse Electric Current)		Unit
	Min	Max	Min	Max	Min	Max	
V_{0}	14.6	15.6	14.50	15.50	-	-	V
V_{1}	-100	90	-110	75	-110	110	mV
V_{2}	-65	65	-50	75	-110	110	mV
V_{3}	-70	70	-85	50	-110	110	mV
V_{4}	-55	50	-45	65	-110	110	mV
X	-220	190	-255	145	-	-	mV
Y	-120	130	-170	85	-	-	mV
$\Delta \mathrm{V}$	-210	190	-300	120	-	-	mV

Load Conditions

	No Load	Max Load	Max Load (Reverse Electric Current)	Unit
I_{0}	0	-300	-	$\mu \mathrm{A}$
I_{1}	0	-50	50	$\mu \mathrm{~A}$
I_{2}	0	200	-100	$\mu \mathrm{~A}$
I_{3}	0	-200	100	$\mu \mathrm{~A}$
I_{4}	0	50	-50	$\mu \mathrm{~A}$

> Non-lighting BIAS
> $X=\left(V_{1}-V_{2}\right)-\left(V_{0}-V_{1}\right)$
> $Y=\left(V_{3}-V_{4}\right)-\left(V_{4}-V_{S S}\right)$

> VOM balance
> $\Delta V=X+Y$

V0 to V4 are Specified as Follows

When the V0 Voltage is Set to the maximum Voltage for the Contrast with the DI0 to DI7 Data Bus Set to "H".

Bias Set-Up Value	R_{1}	R_{2}	R_{3}	$\mathrm{~V}_{1}$	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	$\mathrm{~V}_{4}$
$1 / 7$	H	H	H	$6 / 7 \mathrm{~V} 0$	$5 / 7 \mathrm{~V} 0$	$2 / 7 \mathrm{~V} 0$	$1 / 7 \mathrm{~V} 0$
$1 / 8$	L	H	H	$7 / 8 \mathrm{~V} 0$	$6 / 8 \mathrm{~V} 0$	$2 / 8 \mathrm{~V} 0$	$1 / 8 \mathrm{~V} 0$
$1 / 9$	H	L	H	$8 / 9 \mathrm{~V} 0$	$7 / 9 \mathrm{~V} 0$	$2 / 9 \mathrm{~V} 0$	$1 / 9 \mathrm{~V} 0$
$1 / 10$	L	L	H	$9 / 10 \mathrm{~V} 0$	$8 / 10 \mathrm{~V} 0$	$2 / 10 \mathrm{~V} 0$	$1 / 10 \mathrm{~V} 0$
$1 / 11$	H	H	L	$10 / 11 \mathrm{~V} 0$	$9 / 11 \mathrm{~V} 0$	$2 / 11 \mathrm{~V} 0$	$1 / 11 \mathrm{~V} 0$
$1 / 12$	L	H	L	$11 / 12 \mathrm{~V} 0$	$10 / 12 \mathrm{~V} 0$	$2 / 12 \mathrm{~V} 0$	$1 / 12 \mathrm{~V} 0$
$1 / 13$	H	L	L	$12 / 13 \mathrm{~V} 0$	$11 / 13 \mathrm{~V} 0$	$2 / 13 \mathrm{~V} 0$	$1 / 13 \mathrm{~V} 0$
$1 / 14$	L	L	L	$13 / 14 \mathrm{~V} 0$	$12 / 14 \mathrm{~V} 0$	$2 / 14 \mathrm{~V} 0$	$1 / 14 \mathrm{~V} 0$

Ac Characteristics 1

Test Conditions: tc_{C} (One LP Signal Cycle) $=\mathrm{t}_{\mathrm{CWH}}+\mathrm{t}_{\mathrm{CWL}}+\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{f}}$ (Unless Otherwise Noted, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=11$ to $28 \mathrm{~V}, \mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Item	Symbol	Test Condition	Min	Typ.	Max	Unit
LP Pulse Width	$\mathrm{t}_{\mathrm{CWH}}$	LP	30	-	-	ns
	$\mathrm{t}_{\mathrm{CWL}}$	LP	1	-	-	$\mu \mathrm{s}$
Data Set-up Time	$t_{\text {DSU }}$	DIO1, DIO2	30	-	-	ns
Data Hold Time	tDHD	DIO1, DIO2	5	-	-	
LP Rise / Fall Time	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	LP, FR, DIO1, DIO2	-	-	50	
Output Delay Time (Note 11)	$t_{\text {pd }}$	DIO1, DIO2	20	-	500	
Oscillating Frequency	fosc	OSC1 (Note 12)	25.5	-	42.5	kHz
External Clock Frequency		OSC3	25.5	-	42.5	

Note 11: $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
Note 12: External resistance $=100 \mathrm{k} \Omega$ (between OSC1 and OSC2)

AC Characteristics 2

Test Conditions 1
(Unless Otherwise Noted, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{V}_{\mathrm{CC}}=11$ to $28 \mathrm{~V}, \mathbf{T a}=\mathbf{- 2 0}$ to $\mathbf{7 5}{ }^{\circ} \mathrm{C}$)

Item	Symbol	Test Condition	Min	Typ.	Max
Unit					
Enable Rise / Fall Time	$\mathrm{t}_{\mathrm{Er}} / \mathrm{t}_{\mathrm{Ef}}$	-	-	-	25
Enable Pulse Width	PWEL	-	60	-	-
Data Set-up Time	t_{DS}	-	ns		
Data Hold Time	$\mathrm{t}_{\text {DHW }}$	-	60	-	-

Test Conditions 2

(Unless Otherwise Noted, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vcc}=11$ to $28 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $\mathbf{7 5}{ }^{\circ} \mathrm{C}$)

Item	Symbol	Test Condition	Min	Typ.	Max	Unit
Enable Rise / Fall Time	$\mathrm{t}_{\mathrm{Er}} / \mathrm{t}_{\mathrm{Ef}}$	-	-	-	20	ns
Enable Pulse Width	PWEL	-	60	-	-	ns
Data Set-up Time	t_{DS}	-	60	-	-	ns
Data Hold Time	$\mathrm{t}_{\text {DHW }}$	-	10	-	-	ns

System Diagram (240×80 dots)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases this can cause the device to malfunction.
This is especially true for devices in which the surface (back), or side of the chip is exposed. When designing circuits, make sure that devices are protected against incident light from external sources. Exposure to light both during regular operation and during inspection must be taken into account.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

