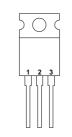


Pin 1 - Ground Pin 2 - V_{OUT} Case - V_{IN}

K Package - TO-3



Pin 1 - Ground Pin $2 - V_{IN}$

Pin 3 - V_{OUT}

 $\text{Case} - \text{V}_{\text{IN}}$

G Package - TO-257

Pin 1 - Ground

Pin $2 - V_{IN}$

Pin 3 - V_{OUT}

 $Case-V_{\text{IN}}$

T Package - TO-220

3 AMP FIXED NEGATIVE VOLTAGE REGULATORS

FEATURES

- 0.01%/V LINE REGULATION
- 0.5% LOAD REGULATION
- ±1% OUTPUT TOLERANCE (-A VERSIONS)
- AVAILABLE IN -5V, -12V AND -15V OPTIONS
- COMPLETE SERIES OF PROTECTIONS:
 - CURRENT LIMITING
 - THERMAL SHUTDOWN
 - SOA CONTROL

Order Information

Part	K-Pack	G-Pack	T-Pack	Temp.	Note:	
Number	(TO-3)	(TO-257)	(TO-220)	Range		
IP1R17Axx–zz	~	~		-55 to +150°C	xx = Voltage Code	zz = Package Code
IP1R17xx-zz	~	~		"	(05, 12, 15)	(G, K, T)
IP3R17Azz-xx	~		~	0 to +125°C	eg.	
IP3R17zz-xx	✓		/	"	IP1R17AK-05	IP3R17G-12

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V_{I}	DC Input Voltage	35V
P_{D}	Power Dissipation	Internally limited
T_J	Operating Junction Temperature Range	See Table Above
T _{STG}	Storage Temperature Range	−65°C to +150°C
T_L	Lead Temperature (Soldering, 10 sec)	300°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise stated)

				IP1R17A-05 IP3R17A-05			IP1R17-05 IP3R17-05				
Baramatar		Toot Conditions 2		Min.			Min.			Units	
Parameter		Test Conditions ²			Typ.	Max.		Typ.	Max.	_	
				-5.05	-5	-4.95	-5.15	-5	-4.85	V	
V _o	Output Voltage	$I_O = -5$ mA to -3A									
'0	Output Voltago	$P \le P_{MAX}$	$V_{IN} = -8V \text{ to } -20V$	-5.15		-4.85	-5.25		-4.75	V	
		$T_J = Over Ter$	np. Range ¹								
ΔV_{O}	Line Degulation	$V_{IN} = -7.5V$ to	-35V		3	15		6	30	mV	
ΔV_{I}	Line Regulation	$I_0 = -5 \text{mA}^{3}$	T _J = Over Temp. Range ¹		6	30		12	60	I	
ΔV_{O}	Lood Dogulation	$I_O = -5$ mA to -	3A ³		5	25		10	50	201/	
ΔI_{O}	Load Regulation		T _J = Over Temp. Range ¹		10	50		20	100	mV	
IQ	Quiescent Current	$I_O = -5mA$	T _J = Over Temp. Range ¹			5			5	mA	
		$I_O = -5$ mA to -	3A	40				10			
 	Quiescent Current	T _J = Over Temp. Range ¹				10			10	^	
ΔI_Q	Change	I _O = -5mA	$V_{IN} = -7.5V \text{ to } -35V$							mA mA	
		$T_J = Over Ter$	np. Range ¹		5				5		
.,	Daniel Mallana	I _O = -3A	$\Delta V_{OUT} = 100 \text{mV}$		0.0	2		0.0	2	,,	
V_D	Dropout Voltage	$T_J = Over Ter$	np. Range ¹		2.2 3			2.2	3	V	
	Dinnle Dejection	I _O = -1A	f = 120Hz	60			00	00			
	Ripple Rejection	$T_J = Over Ter$	np. Range ¹	60 80		60 80			dB		
	Thermal Regulation	t _p = 20ms	$\Delta P = P_{MAX}$		0.002	0.01		0.002	0.02	%/W	
I _{PEAK}	Peak Output Current	V _{IN} = -10V	T _J = Over Temp. Range ¹	-6.5	-4.5		-6.5	-4.5		Α	
	01 + 01 + 11 0 +	V _{IN} = -10V		-4 -1				-4			
I _{SC}	Short Circuit Current	V _{IN} = -35V					-1		A		
e _n	Output Noise Voltage	f = 10Hz to 10	00kHz		40			40		μV	
	Thermal Resistance	K Package G, T Package			1.5	2.5		1.5	2.5	1,000	
$R_{\theta JC}$	Junction to Case				3	4		3	4	°C/W	

Notes

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R17A} -05 / \text{IP1R17} -05$

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R17A-05} / \text{IP3R17-05}$

All other specifications apply at $T_C = 25^{\circ}C$ unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = -10V$, $I_{OUT} = -1.5A$.

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 30W for the TO–3 Package, and 20W for the TO–220 and TO–257 Packages.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

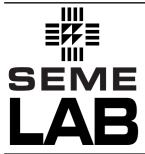
				IP1R17A-12 IP3R17A-12			IP1R17-12 IP3R17-12			
Parameter		Test Conditions ²		Min.	Typ.	Max.	Min.	Typ.	Max.	Units
- 4.4				-12.12	-12		-12.36	-12	-11.64	V
,,	Output Valtage	I _O = -5mA to -3A								
Vo	Output Voltage	$P \le P_{MAX}$	$V_{IN} = -15V \text{ to } -27V$	-12.36		-11.64	-12.60		-11.40	\ \ \ \
		$T_J = Over Ter$	np. Range ¹							
ΔV_{O}	Line Degulation	$V_{IN} = -14.5V t$	o -35V		5	30		10	60	mV
ΔV_{I}	Line Regulation	$I_{O} = -5 \text{mA}^{3}$	T _J = Over Temp. Range ¹		10	60		20	120	IIIV
ΔV_{O}	Lood Dogulation	$I_O = -5mA$ to -	3A ³		10	60		20	120	mV
ΔI_{O}	Load Regulation		T _J = Over Temp. Range ¹		20	120		40	240	
IQ	Quiescent Current	I _O = -5mA	T _J = Over Temp. Range ¹			5			5	mA
		$I_O = -5$ mA to -3A $T_J = $ Over Temp. Range ¹				10			10	
, ,	Quiescent Current									
ΔI_Q	Change	I _O = -5mA	$V_{IN} = -14.5V$ to -35V		5			_	mA	
		T _J = Over Ter	np. Range ¹						5	
	Daniel Mallana	I _O = -3A	$\Delta V_{OUT} = 250 \text{mV}$		2.2		2.2	3	V	
V _D	Dropout Voltage	$T_J = Over Ter$	np. Range ¹		2.2 3			2.2	3	
	Dipple Dejection	I _O = -1A	f = 120Hz	50	F0 70			70		dB
	Ripple Rejection	$T_J = Over Ter$	np. Range ¹	52 72		52	52 72			
	Thermal Regulation	t _p = 20ms	$\Delta P = P_{MAX}$		0.002	0.01		0.002	0.02	%/W
I _{PEAK}	Peak Output Current	V _{IN} = -17V	T _J = Over Temp. Range ¹	-6.5	-4.5		-6.5	-4.5		Α
	Chart Circuit Comment	V _{IN} = -17V		-2.5 -1				-2.5		
I _{sc}	Short Circuit Current	V _{IN} = -35V					-1		A	
e _n	Output Noise Voltage	f = 10Hz to 10	00kHz		75			75		μV
_	Thermal Resistance	K Package			1.5	2.5		1.5	2.5	00.00
$R_{\theta JC}$	Junction to Case	G, T Package			3 4	4		3	4	°C/W

Notes

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R17A} -12 / \text{IP1R17} -12$

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R17A} -12 / \text{IP3R17} -12$


All other specifications apply at $T_C = 25$ °C unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = -17V$, $I_{OUT} = -1.5A$.

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 30W for the TO–3 Package, and 20W for the TO–220 and TO–257 Packages.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

				IP1R17A-15 IP3R17A-15			IP1R17-15 IP3R17-15				
B		Total Complisions 2									
Parameter		Test Conditions ²		Min.	Тур.	Max.	Min.	Тур.	Max.	Units	
				-15.15	-15	-14.85	-15.45	-15	-14.55	V	
Vo	Output Voltage	$I_O = -5 \text{mA to } -1$	3A								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Odiput Voltage	$P_{OUT} \le P_{MAX}$	$V_{IN} = -18V \text{ to } -30V$	-15.45		-14.55	-15.75		-14.25	V	
		$T_J = Over Ten$	np. Range ¹								
ΔV_{O}	Line Degulation	$V_{IN} = -17.5V \text{ to}$	o -35V		8	40		16	80	m\/	
ΔV_{I}	Line Regulation	$I_0 = -5 \text{mA}^3$	T _J = Over Temp. Range ¹		16	80		32	160	mV	
ΔV_{O}	Load Regulation	$I_O = -5$ mA to -	3A ³		16	80		32	160	- mV	
ΔI_{O}	Load Regulation		T _J = Over Temp. Range ¹		32	160		64	320		
IQ	Quiescent Current	I _O = -5mA	T _J = Over Temp. Range ¹			5			5	mA	
		$I_O = -5$ mA to -3A $T_J = $ Over Temp. Range ¹				10			10		
, ,	Quiescent Current								10	A	
ΔI_Q	Change	I _O = -5mA	$V_{IN} = -17.5V \text{ to } -35V$		5				5	- mA	
		$T_J = Over Ten$	np. Range ¹	5		5					
\/	Drangust Valtage	I _O = -3A	$\Delta V_{OUT} = 300 \text{mV}$		2.2 3			2.2	3	V	
V_D	Dropout Voltage	$T_J = Over Ten$	np. Range ¹					2.2	3	'	
	Ripple Rejection	I _O = -1A	f = 120Hz	50	F0 70		50	70		dB	
	Ripple Rejection	$T_J = Over Ten$	np. Range ¹	50 70			30	30 70			
	Thermal Regulation	t _p = 20ms	$\Delta P = P_{MAX}$		0.002	0.01		0.002	0.02	%/W	
I _{PEAK}	Peak Output Current	V _{IN} = -20V	T _J = Over Temp. Range ¹	-6.5	-4.5		-6.5	-4.5		Α	
Ì.	Short Circuit Current	V _{IN} = -20V		-2.3 -1				-2.3		_	
I _{SC}	Short Circuit Current	V _{IN} = -35V					-1		A		
e _n	Output Noise Voltage	f = 10Hz to 10	0kHz		90			90		μV	
Ь	Thermal Resistance	K Package G, T Package			1.5	2.5		1.5	2.5	°C/W	
$R_{\theta JC}$	Junction to Case				3	4		3	4	C/ VV	

Notes

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R17A} -15 / \text{IP1R17} -15$

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R17A} -15 / \text{IP3R17} -15$

All other specifications apply at $T_C = 25^{\circ}C$ unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = -20V$, $I_{OUT} = -1.5A$.

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 30W for the TO–3 Package, and 20W for the TO–220 and TO–257 Packages.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.