
AN548/0792

THE IMSA110 BACK-END POST PROCESSOR

APPLICATION NOTE

SUMMARY Page

1. INTRODUCTION. 1

2. DESCRIPTION OF THE BACKEND POST PROCESSOR . 1

2.1 INPUT BLOCK (shifter, cascade adder and rectifier) . 3

2.2 STATISTICS MONITOR . 3

2.3 DATA CONDITIONING UNIT (data transformation unit and data normaliser) 3
2.3.1 Data transformation unit . 3
2.3.2 Data normaliser. 4

2.4 OUTPUT UNIT (output adder and output multiplexers) . 4
2.4.1 Output adder . 4
2.4.2 Output multiplexers . 4

3. USES OF THE BACKEND POST PROCESSOR . 4

3.1 LOCAL AREA AVERAGING . 4

3.2 HISTOGRAM EQUALIZATION . 5

3.3 EDGE DETECTION AND ENHANCEMENT . 6
3.3.1 Edge detection . 6
3.3.2 Edge enhancement . 7

3.4 FEATURE RECOGNITION . 7

3.5 CHANGING CONDITIONS COMPENSATION . 7

3.6 BINARY IMAGE PROCESSING . 8

3.7 MULTILEVEL THRESHOLDING - IMAGE CONTOURING . 8

3.8 DYNAMIC RANGE COMPRESSION . 9

4. SUMMARY . 10

5. REFERENCES . 10

I. INTRODUCTION

The IMSA110 consists of a high performance con-
figurable array of multiply-accumulators (420
MOPs), three programmable length 1120 stage
shift registers and a versatile backend post proc-
essing unit. All these features are controlled from a
microprocessor interface. The comprehensive on-
chip facilities ensure that a single device is capable
of dealing with many tasks commonly found in the
fields of signal and image processing.

The backend post processing unit gives the
IMSA110 a high degree of flexiblility, especially for
image processing applications. This document de-

scribes by example some of the uses of the back-
end post processor.

Unless specified otherwise all the examples con-
sidered will be based around image processing
applications with 8 bits per pixel being used to
represent the image data.

2. DESCRIPTION OF THE BACK-END POST
PROCESSOR

Figure 1 shows the functional blocks and intercon-
nections which are present within the backend post
processor of the IMSA110.

1/10

Shifter -2 to 14

Shifter [8:0]

Cascade Adder

Rectifier

Prescaler

Byte select

Min/max register

Comparator GT/LT

Over/undershoot count

Over/undershoot buffer

Min/max buffer

LSR

64 x 32 bit RAM

8

6

USR

32 Y bus
[26:22]

[21:0]

32

DATA TRANSFORMATION
UNIT

22

22

22

MUX

22

22

22

22
From MAC array

negative overflow

positive overflow

Cascade input pads

1
Rounding

22

Control

STATISTICS MONITOR

5

22

22

1

1

X
 b

us

8

from
BCR

M
U

X

Zero data

22 MUX 22
1

Rounding

Output Adder

22

22

88

6

[21:14] [7:0]

MUX MUX

8 8
[13:8]

[21:14] [7:0]

22

Clock
cycle

Cascade output pads

1

2

3

4

5

6

Over/under select

(Isbs) 2

DATA NORMALISER

A
N

54
8-

01
.E

P
S

Figure 1 : Detailed Block Diagram of the Back-end Post Processing Unit

THE IMSA110 BACK-END POST PROCESSOR

2/10

This diagram can be broken down into 4 main
sections, the input block, statistics monitior, data
conditioning unit and output block. A brief descrip-
tion of each of these major sections is given below,
for full details reference should be made to the data
sheet.

2.1 Input Block (shifter, cascade adder and
rectifier)
Data from the MAC array encounters the shifter
when it enters the input block. The shifter is capable
of up to 8 arithmetic shifts in either direction. When
shifting left it is possible for an overflow to occur.
Such an overflow is not detected by the device,
hence it is left to the user to ensure that uninten-
tional overflows do not occur. When shifting right
rounding is applied to improve the accuracy of the
device. The magnitude and direction of the shift are
controlled by BCR0[5..1] as described in the data
sheet.

The output data from the shifter is fed into the
cascade adder. Here it is added to both the round-
ing bit generated by the shifter and the data applied
to either the cascade input bus or zero depending
on the setting of BCR0[0]. Should the result of the
22 bit signed addition be greater than 221-1 then a
positive overflow is generated. Similarly if the result
is less than -222 a negative overflow is generated.

The output from the cascade adder can be option-
ally full or half wave rectified depending on the
setting of BCR0[7..6]. The output of the rectifier
drives the X bus. Note that when full wave rectifi-
cation is being used and the output of the cascade
adder is -221 then the output from the rectifier
remains as -221.

2.2 Statistics Monitor
The statistics monitior allows the X bus to be moni-
tored for certain conditions. Four different modes
of operation are possible and these are tabulated
below:

Mode BCR1[1] BCR1[0]
Max Register 0 1
Min Register 0 0
Overshoot Counter 1 1
Undershoot Counter 1 0

When configured to be in max register mode and
the X bus exceeds the current threshold in the
MMR (max/min register), then the MMR is loaded
with the value on the X bus and the counter (OUC)
is incremented. If the threshold is not exceeded
then no action is taken. Thus assuming the MMR

was initially set to -221 its value at some later time
is the maximum value which has appeared on the
X bus in that period, and the OUC has been incre-
mented by the number of times the threshold has
been updated.
If configured to be in min register mode the thresh-
old is updated and the counter incremented when-
ever the X bus is less than the current threshold.
Note that when operating in max/min register mode
if a positive or negative overflow occurs then the
threshold is not updated since this could leave a
misleading value in the MMR.

As an overshoot counter the statistics monitor op-
erates by incrementing the OUC every time the
value on the X bus exceeds the threshold in the
MMR or if a positive overflow occurs. The OUC is
unsigned and will not wrap around, thus behaving
as a saturating counter. Similarly when configured
to be in undershoot counter mode the OUC is
incremented every time the value on the X bus is
less than the current threshold.

When overflows occur this is recorded in bits 22
and 23 of the MMR. Positive overflows cause bit 22
to be set while negative overflows cause bit 23 to
be set. These bits may be cleared by writing to the
MMB copy location.

Direct access to the MMR and OUC via the micro-
processor interface is not possible. Instead the
reading and writing of these registers is performed
by making use of the MMB, CMM, OUB and COU
registers. Full details may be found in the data
sheet.

2.3 Data Conditioning Unit (data transformation
unit and data normaliser)

2.3.1. DATA TRANSFORMATION UNIT
The data transformation unit contains a prescaler,
an under/over select detector, a look up table and
a byte selector. It may be used on its own to provide
arbitrary data mappings of an 8 bit segment of the
X bus, or in conjunction with the data normaliser to
implement sophisticated dynamic range compres-
sion functions.
The prescaler allows an 8 bit field to be selected
from anywhere within the 22 bits of the X bus. This
8 bit field is used as an address to the LUT. The
way in which the address is treated is defined in
SCR[6]. If this bit is set to zero then the address is
signed and runs from -128 to 127. Alternatively if
this bit is set to one then the address is unsigned
and runs from 0 to 255. The over/under select
detector monitors the operaton of the prescaler to

THE IMSA110 BACK-END POST PROCESSOR

3/10

ensure that all the significant bits and the sign of
the X bus are included within the 8 bit field. If this
is not the case then an overselect or underselect
signal is generated depending on whether the X
bus is positive or negative respectively.
The LUT consists of sixty four 32 bit words. In
addition there are a further two 32 bit locations
known as the upper and lower saturation registers
(USR, LSR). The most significant 6 bits of the
address field are used to select one of the 32 bit
registers in the LUT. This 32 bit output is known as
the Y bus. The least significant 2 bits of the address
field are then used to control a byte select on the
output. Thus the LUT may be used to provide
arbitrary 8bit - 8bit data transformations.
Positive overflows on the X bus or overselects in
the prescaler cause the LUT to access the USR
overriding the address supplied by the prescaler.
Similarly negative overflows and underselects
cause the LUT to access the LSR. When such
conditions occur the byte select control is also
overridden thus causing the most significant byte
(byte 3) of the appropriate saturation register to
appear on the byte wide output of the data trans-
formation unit.
The LUT is programmed via the memory interface.
The addressing for the LUT corresponds directly to
the 8 bit field, assuming that the byte selector is
being used. To enable access to the LUT, USR and
LSR from the microprocessor interface the LUT
access control bit ACR[1] must be set to zero. This
forces the Y bus to zero and causes the normaliser
to be controlled by BCR3[7..3] regardless of the
setting of the dynamic normalisation bit. Once the
LUT has been programmed the LUT access control
bit may be reset to one thus allowing the LUT to be
used in the data transformation unit.

2.3.2 DATA NORMALISER
The data normaliser contains a shifter followed by
a zero data unit. The shifter is capable of right shifts
of up to 14 bits and left shifts of up to 2 bits. Any
amount of shift outside this range invokes the zero
data unit which zeros the output of the data normal-
iser. The amount of shift is specified by one of two
5 bit sources. These are either BCR3[7..3] or bits
26 to 22 of the Y bus. The source currently selected
is determined by the setting of BCR3[2].

2.4 Output Unit (output adder and output
multiplexers)

2.4.1 OUTPUT ADDER
The output adder takes one of its inputs from the

data normaliser (including the rounding bit). The
other input is either the least significant 22 bits of
the Y bus or zero depending on the setting of
BCR3[1]

2.4.2 OUTPUT MULTIPLEXERS
The output multiplexers allow the selected byte
from the LUT to be optionally selected to drive
either the most or least significant 8 bits of the
cascade output pins. This feature is controlled by
the setting of BCR2[5..6]. Any cascade output pins
not being driven by the selected byte are driven by
the appropriate bits of the output adder.

1

1

1

1

1

1

1

1

1

1

9

A
N

54
8-

02
.E

P
S

Figure 2 : Local Averaging Filter Kernel

3. USING THE BACKEND OF THE IMS A110s

3.1 Local area averaging
Local averaging is the one of the simplest image
filtering operations. A typical local averaging filter
may be seen in Figure 2. Although this filter looks
very simple to implement on IMSA110s there is one
slight problem and that is how to achieve the divide
by nine operation. The operation is necessary to
ensure that the output image data requires the
same number of bits to represent it as the input
data.

The IMSA110 is capable of dividing by integer
powers of two. Using this capability the 1

9
 could be

replaced with 1
16

. Although this would adequately

restrict the magnitude of the output data a signifi-
cant loss of dynamic range could occur. A better
solution is to generate an approximation to 1

9
 in the

form shown below. Where x represents the coeffi-
cient and y the number of righ shift below :

x

2y ≈
1
9

It may be simply shown that the closest approxima-
tion which may be used with IMS A110s is:

x = 57
y = 9

THE IMSA110 BACK-END POST PROCESSOR

4/10

By using these values the local averaging kernel to
be programmed into the IMSA110 is as shown
below:

1
92

57

57

57

57

57

57

57

57

57

A
N

54
8-

03
.E

P
S

Figure 3 : Modified Local Averaging Filter Kernel

The division by 29 can’t be performed by the shifter
in the input block since it is only capable of right
shifting up to 8 places. The shifter in the normaliser
however is capable of right shifting the required
nine places.
To configure an IMSA110 so that it performs the
local averaging operation used in the above exam-
ple the following values would have to be pro-
grammed into the coefficient and control registers:

Coeff Register 0 1 2 3 4 5 6
CR0a 57 57 57 0 0 0 0
CR0b 57 57 57 0 0 0 0
CR0c 57 57 57 0 0 0 0

Registers Data msb .. lsb
SCR 0 x x 1 1 1 x 0
ACR 0 0 0 0 0 0 x 0
BCR0 x x 0 0 0 0 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 0 0 x x x x x
BCR3 0 1 0 0 1 0 0 0

x : indicates don’t care.

Exactly the same technique may be applied to
other filter kernels which require an awkward divi-
sion. For example the edge enhancement opera-
tion shown in Figure 4 requires a division by 5
operation. A modified version of the kernel which
may be easily implemented is shown below.

1

5

0

0

0

0

- 1

- 1

- 1

- 15

A
N

54
8-

04
.E

P
S

Figure 4 : Edge Enhancement Filter Kernel

1
2

0

0 0

0

64

- 13

- 13

- 13

- 136

A
N

54
8-

05
.E

P
S

Figure 5 : Modified Edge Enhancement Filter
Kernel

3.2 Histogram equalization

Histogram equalization is one example of the wider
field of histogram modification [1]. All such opera-
tions manipulate the grey levels within an image to
generate a new image with a modified grey level
histogram. The histogram equalization technique
attempts to manipulate the grey levels within an
image so that an even spread is obtained across
the entire range of intensities. Details of the tech-
nique are widely available in the technical press [1]
so an in depth discussion will not be provided
here.
There are two distinct stages in performing a histo-
gram equalization the second of which IMSA110s
are capable of performing. The first stage is the
calculation of the transfer function which maps the
original image onto the histogram equalized image.
The main computational cost involved in this stage
is the determination of the original histogram. The
second stage requires the implementation of the
transfer function to map the grey levels in the input
image to the equalized grey levels in the output
image.
The transfer function is implemented by making
use of the arbitrary 8bit-8bit mapping ability of the
LUT present within the IMSA110. The offset of each
location in the LUT may be regarded as one of the
original grey levels and the value programmed into
that location is the transformed grey level after
equalization.
For example suppose that it was desired to use an
IMSA110 to perform a histogram equalization on 8
-bit image data applied to the cascade input port
with the MAC coefficients programmed to zero. The
table below shows the values which would have to
be programmed into the main control registers. The
output data would appear on the lower 8 bits of the
cascade output port.

THE IMSA110 BACK-END POST PROCESSOR

5/10

Register Data msb .. lsb
SCR 0 1 x 1 x x x x
ACR 0 0 0 0 0 0 A x
BCR0 x x x x x x x 0
BCR1 0 0 0 0 0 0 x x
BCR2 0 1 0 0 0 0 0 0
BCR3 1 0 0 0 0 0 0 0
LUT n D D D D D D D D

x : Indicates don’t care.
A : Set to 0 to program LUT, set to 1 to allow IMSA110 LUT ac-
cess.
D : Program with the mapping n ⇒ D[7..0].

By modifying the transfer function programmed into
the LUT many other operations are possible includ-
ing thresholding and image contouring which are
described in sections 3.3 and 3.7 respectively.

3.3 Edge detection and enhancement

3.3.1 EDGE DETECTION
Edge detection is a very important image process-
ing operation since it is often the first stage in
feature recognition. For example consider the hori-
zontal edge detector shown in Figure 6. This filter
is actually the y component of the Söbel operator.
The output (H(x,y)) from the filter when convolved
with an image is a measure of the change of
intensity in the y direction at each point.

11

1

4YG =

- 1 - 1- 2

0 0 0

2

A
N

54
8-

06
.E

P
S

Figure 6 : Y Component of the Söbel Operator

The output at any given point may be positive or
negative depending on the direction of the intensity
gradient vector at that location. Often when using
such a filter to detect vertical edges only the mag-
nitude of the gradient vector is of interest (i.e. its
direction is irrelevant). The results may be modified
to simply indicate the magnitude by processing the
output as shown below.

F[x,y]=|H(x,y)|
The modulus operation is an ideal example of the
use of full wave rectification. The tables below show
the configuration of the coefficient and control reg-
isters necessary to calculate |H(x,y)|.

Coeff Register 0 1 2 3 4 5 6
CR0a -1 -2 -1 0 0 0 0
CR0b 0 0 0 0 0 0 0
CR0c 1 2 1 0 0 0 0

Registers Data msb .. lsb
SCR 0 x x 1 0 1 x 0
ACR 0 0 0 0 0 0 x 0
BCR0 1 0 0 0 0 1 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 0 0 x x x x x
BCR3 0 0 0 0 0 0 0 0

x : Indicates don’t care.

Typically once an edge detection operator has
been convolved with an image it is necessary to
make some sort of decision based on the magni-
tude as to whether an edge exists at each point of
the output. The method usually used is known as
thresholding [1].
The threshold operation involves mapping all
points with a grey level greater than a given thresh-
old to one value (typically 255), and all other points
to another value (typically 0). The lookup table as
described in section 3.2 provides the ability to
perform just such an arbitrary mapping. By modify-
ing the control registers presented above it is pos-
sible to do not only the edge detection operation
and the full wave rectification, but also to apply an
arbitrary threshold all within a single device. The
updated table of control registers is shown below:

Registers Data msb .. lsb
SCR 0 1 x 1 0 1 x 0
ACR 0 0 0 0 0 0 A 0
BCR0 1 0 0 0 0 1 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 1 0 0 0 0 0 0
BCR3 1 0 0 0 0 0 0 0
LUT n D D D D D D D D

x : Indicates don’t care.
A : Set to 0 to program LUT, set to 1 to allow IMS A110 LUT ac-
cess.
D : Set to 0 for n less than or equal to the threshold, set to 1 other-
wise.

3.3.2 EDGE ENHANCEMENT
Edge enhancement is often applied to images to
either counteract blurring or to produce a sharper
looking image which is sometimes aesthetically
more pleasing. One filter kernel which gives an
edge enhancement may be seen in Figure 5. When
this filter is convolved with an image it is possible
to generate not only valid positive image data but
also negative values under some circumstances.
One solution would be to apply full wave rectifica-

THE IMSA110 BACK-END POST PROCESSOR

6/10

tion to the result however it is generally more
acceptable if half wave rectification is applied.

To implement such a filter on an IMSA110 the
coefficient and control registers would have to be
set up as shown in the following tables.

Coeff Register 0 1 2 3 4 5 6
CR0a 0 -13 0 0 0 0 0
CR0b -13 64 -13 0 0 0 0
CR0c 0 -13 0 0 0 0 0

Registers Data msb .. lsb
SCR 0 x x 1 0 1 x 0
ACR 0 0 0 0 0 0 0 0
BCR0 0 1 0 0 1 1 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 0 0 x x x x x
BCR3 0 0 0 0 0 0 0 0

x : Indicates don’t care.

3.4 Feature recognition
By using the statistics monitor it is possible to get
the IMSA110 to see if a given pattern was present
within an image. To enable this process to take
place a number of things have to be done:
• The MAC coefficients must be configured as a

pattern detector for the pattern which is being
searched for. If the pattern is large a number of
devices can be cascaded [2] to achieve the re-
quired window size.

• The statistics monitor must be configured so that
it is in max register mode.

• The MMR must be programmed with -221 at the
start of the search period (typically at the start of
a frame).

As one or more images are processed the MMR
register is continually updated to indicate the high-
est MAC output which has occured so far. When
the pattern detector encounters the pattern that it
is designed to search for the MAC output should
generate a very large output which exceeds a given
threshold. This output will be recorded in the MMR.
By examining the MMR at the end of the search
period (typically at the end of the frame) it is possi-
ble to see if the threshold has been exceeded. If
this is the case then it is possible to say that the
pattern probably occurred somewhere within the
data that was processed. The setting of the thresh-
old to achieve reliable operation requires system
teaching using known sets of data.

In a similar fashion it is possible to perform feature
recognition with the statistics monitor configured as
an overshoot counter. In this mode of operation the
detection of the desired pattern is indicated by an
increase in the value of the OUC (care must be
taken to ensure that it does not saturate). The
method of setting the threshold at which the over-
shoot counter is incremented is identical to the
description given in the previous paragraph. At first
sight it may appear that this method enables the
number of occurences of a given pattern to be
counted. Unfortunately this is unlikely to be the
case for the following reason.

When the pattern being searched for is encoun-
tered it is possible for the OUC to be incremented
more than once. This is caused by a combination
of uncertainty about the pattern and the properties
of pattern detectors as decribed below:
• In a typical pattern matching application the pat-

tern is rarely perfect. Degradations from the ideal
may be caused by additive noise, distortion of the
object, changing lighting conditions etc. To take
this into account the threshold is normally set to
a value which is low enough to increment the
OUC for all likely occurences of the pattern.

• Due to the nature of pattern detectors a large
output is not only generated when the detector is
coincident with the pattern but quite large out-
puts can also be generated when it is just off
centre.

The combination of these two problems means that
each occurence of the pattern could increment the
OUC one or more times thus damaging any indica-
tion the change in OUC could give about the num-
ber of occurences of a pattern.

3.5 Changing conditions compensation
The front end of many automated image process-
ing systems will experience slowly changing input
conditions. These may occur due to changing light
levels, drifting component tolerances etc. The in-
clusion of the max/min register modes of the sta-
tistics monitor allows the system to automatically
compensate for these changes. For example con-
sider a system which uses daylight to illuminate the
field of view. As the day proceeds the output from
the camera will change. By spending periods of
time monitoring both the maximum and minimum
levels in the data stream it is possible to adapt the
system to take these changes into account.

THE IMSA110 BACK-END POST PROCESSOR

7/10

3.6 Binary image procesing
A binary image is one which contains only two grey
levels. Typically a binary image is the result of a
thresholding operation as described in section 3.3.
By making use of the MAC and the backend it is
possible to implement a wide variety of different
operations some of which are summarised below:
• Isolated pixel removal — removal of all pixels

which have no identical neighbour.
• Line linking — bridging of small gaps between

pixels.
• Encoding according to connectivity — coding of

pixels depending on their connectivity with re-
spect to surrounding pixels.

• Binary thinning including staircase elimination —
[3] [4] [5] [6] [7]

• Feature growth — opposite of the above.
• Conway’s game of life — the oldest computer

game known to man.
As an example of the techniques involved isolated
pixel removal will be examined in more detail.
Consider a pixel with its 8 surrounding neighbours
as shown in Figure 7. It is assumed that active and
inactive pixels are represented by 1 and 0 respec-
tively.

P0

A
N

54
8-

07
.E

P
S

Figure 7 : A Pixel and its 8 closed neighbours

1

1

1

1

1

1

1

1

9

A
N

54
8-

08
.E

P
S

Figure 8 : Filter Kernel for Isolated Pixel Removal

If the central pixel is in the opposite state to all its
surrounding neighbours then the value of the cen-
tral pixel must be toggled. In order to perform the
transformation it is necessary to develop a filter
kernel which will give a unique output for each of
these two condition. One such kernel is shown in
Figure 8 below:

By programming the MAC with this kernel the
outputs generated when the binary image is ap-
plied will range from 0 to 17 inclusive. The two
particular cases of special interest are 8 and 9
which correspond to a 0 surrounded by 1s and a 1
surrounded by 0s respectively.
To convert from the output of the MAC to a binary
image in the original format use may be made of
the LUT. The complete mapping for the LUT and
the setting of the main control registers for this
example are tabulated below:

Coeff Register 0 1 2 3 4 5 6
CR0a 1 1 1 0 0 0 0
CR0b 1 9 1 0 0 0 0
CR0c 1 1 1 0 0 0 0

Registers Data msb .. lsb
SCR 0 1 x 1 1 1 x 0
ACR 0 0 0 0 0 0 A 0
BCR0 x x 0 0 0 0 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 1 0 0 0 0 0 0
BCR3 1 0 0 0 0 0 0 0
LUT 0-7 0 0 0 0 0 0 0 0
LUT 8 0 0 0 0 0 0 0 1
LUT 9 0 0 0 0 0 0 0 0
LUT 10-17 0 0 0 0 0 0 0 1

x : Indicates don’t care.
A : Set to 0 to program LUT, set to 1 to allow IMS A110 LUT ac-
cess.

3.7 Multilevel thresholding - image contouring
Often it is desired to highlight a number of areas
within a single image. Providing that each of the
areas occupies a different region of the grey scale
then this can be achieved by multi level threshold-
ing (sometimes known as image contouring). Typi-
cally such a technique is often used in medical
work. For example consider an X-Ray taken of a
patient which may well contain three very distinct
regions:
• Clear regions: representing bone.
• Intermediate regions: representing major body

organs.
• Dark regions: representing regions where the

X-Rays met little resistance.
By using the LUT to provide arbitrary 8bit-8bit data
mappings as descibed in sections 3.2 and 3.3 it is
possible to assign each of these three regions a
separate value. As a further enhancement external
hardware could be used to colour each of the three
regions. Such colouring can greatly simplify the
comprehension of some types of image.

THE IMSA110 BACK-END POST PROCESSOR

8/10

3.8 Dynamic range compression

Consider image data which requires 12 bits to
represent each pixel. If it is desired to display such
an image on a system which uses only 8 bits per
pixel then some form of range compression is
required. One solution is to discard the lower 4 bits
of each pixel. This would leave the 8 most signifi-
cant bits for display. If however, the image was dark
the lower 4 bits would contain a large proportion of
the image data. To throw away the lower 4 bits in
such a situation would almost certainly be unac-
ceptable. A better solution in this case would be to
use the nonlinear tranformation shown in Figure 9.
Using this transformation values between 0 and 63
are unchanged; values between 64 and 1023 are
mapped into the range 64 to 183 and values be-
tween 256 and 4095 are mapped into the range
184 to 232.
The IMSA110 is capable of performing just such a
nonlinear transformation by making use of both the
data transformation unit and the data normaliser.
The mode of operation which is required is known
as dynamic normalisation, this is selected by set-
ting BCR3[2] (enable dynamic normalisation). In
this mode the prescaler selects a 6-bit field any-
where within the X bus. This is used as an address
to the LUT. Bits 22 to 26 of the output of the LUT
are used to control the normaliser block so that the
input to the normaliser is dynamically scaled. The
output of the normaliser is then added, in the output
adder, to the least significant 22 bits of the output
of the LUT.

The operation can be viewed as :
output=(input×scale)+offset

where the scale is provided by bits 22 to 26 and the
offset is provided by bits 0 to 21 of the LUT.

To define the transformation function shown in
Figure 9 it is necessary to carefully calculate the
values to be placed in the LUT. The first stage in
this calculation is deciding which slice of the X bus
the prescaler is going to select. In this example it
will be set so that bits 4 through to 11 are selected.
This means that bits 6 to 11 are used as the address
for the lookup table. Bearing this in mind it may be
seen that in the first segment of the transfer func-
tion the LUT address is zero. Since in this segment
the scale is 1 (0 right shifts) and the offset is 0 the
following four bytes of data must be programmed
into the first 32 bit location of the LUT.

BYTE 3 BYTE 2 BYTE 1 BYTE 0

LUT 0 00 00 00 00

The second segment of the transfer function occurs
between LUT addresses 1 to 15. In this segment
the gradient is 1/8 (3 Right shifts). To ensure that
the first and second segment line up correctly it is
important to set the offset of the second segment
to the correct value.

It may be easily shown that in this case the offset
is 56. Thus the data to be programmed into the 15
LUT locations from addresses 1 to 15 is:

BYTE 3 BYTE 2 BYTE 1 BYTE 0

LUT 1 00 C0 00 38

LUT n 00 C0 00 38

LUT 15 00 C0 00 38

1

64

184
232

1 64 1024 40950

Log input scale

Lo
g

ou
tp

ut
 s

ca
le

A
N

54
8-

09
.E

P
S

Figure 9 : Typical Dynamic Range Compression Function

THE IMSA110 BACK-END POST PROCESSOR

9/10

In exactly the same manner the LUT data for the
third and final segment of the transfer function may
be shown to be:

BYTE 3 BYTE 2 BYTE 1 BYTE 0
LUT 16 01 80 00 A8
LUT n 01 80 00 A8
LUT 63 01 80 00 A8

The settings of the other main control registers to
perform the example transform on data applied to
the cascade input port are:

Coeff Register 0 1 2 3 4 5 6
CR0a 0 0 0 0 0 0 0
CR0b 0 0 0 0 0 0 0
CR0c 0 0 0 0 0 0 0

Registers Data msb .. lsb
SCR 0 1 x 1 x x x 0
ACR 0 0 0 0 0 0 A 0
BCR0 x x x x x x x 0
BCR1 0 0 0 0 0 0 x x
BCR2 0 0 0 0 0 1 0 0
BCR3 x x x x x 1 1 0

x : indicates don’t care.
A : Set to 0 to program the LUT, set to 1 to allow IMS A110 LUT
access.

4. SUMMARY

This document has attempted to describe by exam-

ple some of the many ways in which the backend
post processor of the IMSA110 may be used. It has
only been possible to scratch the surface of a
handful of applications but hopefully the examples
discussed should have provided an insight into
both the flexibility and capability of this section of
the device.

5. REFERENCES

[1] R. C. Gonzalez, P.Wintz — Digital Image
Processing, Addison Wesley.

[2] R. Whitton — Cascading IMS A110s,
INMOS.

[3] R. Stefanelli, A. Rosenfeld — Some Parallel
Thinning Algorithms For Digital Pictures.
Comm ACM 18, 2.

[4] H.E. Lu, P.S.P. Wang — A Comment On Fast
Parallel Algorithms For Thinning Digital
Patterns. Comm ACM 29, 3.

[5] C.M. Holt, A. Stewart, M. Clint, R.H. Perrott
— An Improved Parallel Thinning Algorithm.
Comm ACM 30, 2.

[6] R.W. Hall — Fast Parallel Thinning
Algorithms: Parallel Speed And Connectivity
Preservation. Comm ACM 32, 1.

[7] Z. Guo, R.W. Hall — Parallel Thinning With
Two Subiteration Algorithms. Comm ACM
32, 3.

Information furnished is believed to be accurate and rel iable. However, SGS-THOMSON Microelectronics assumes no responsibility
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in lif e
support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I 2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in a I 2C system, is granted provided that the system conforms to

the I 2C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

THE IMSA110 BACK-END POST PROCESSOR

10/10

