

POWER MANAGEMENT

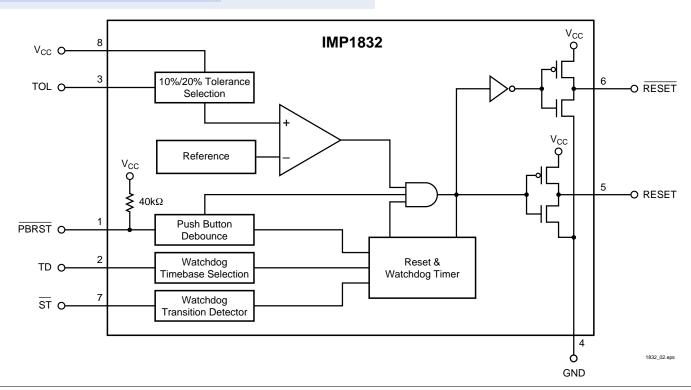
3.3V µP Power Supply Monitor and Reset Circuit

- Selectable Trip-Point Tolerance and Watchdog Period
- Push-Button Reset
- Push-Pull Reset Outputs

The IMP1832 microprocessor supervisor can halt and restart a "hungup" or "stalled" microprocessor, restart a microprocessor after a power failure, and debounce a manual push-button microprocessor reset switch. The IMP1832 features over 40% lower supply current than the pin compatible Dallas Semiconductor DS1832.

Precision temperature compensated reference and comparator circuits monitor the 3.3V, V_{CC} input voltage. During power-up or when the V_{CC} power supply falls outside selectable tolerance limits, both RESET and RESET become active. When V_{CC} rises above the threshold voltage, the reset signals remain active for an additional 250ms minimum, allowing the power supply and system microprocessor to stabilize. The trip point tolerance signal, TOL, selects the trip level tolerance to be either 10- or 20-percent.

RESET and RESET outputs are push-pull.

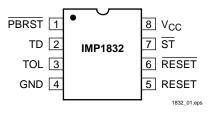

A debounced manual reset input, <u>PBRST</u>, activates the reset outputs for a minimum period of 250ms.

Key Features

- Pin compatible with the Dallas Semiconductor DS1832
 - Over 40% lower supply current
- ♦ 3.3V supply monitor
- Push-pull output
- Selectable watchdog period
- Debounce manual push-button reset input
- Precision temperature-compensated voltage reference and comparator
- Power-up, power-down and brownout detection
- 250ms minimum reset time
- Active LOW and HIGH reset signal
- Selectable trip point tolerance: 10% or 20%
- Low-cost 8-pin DIP/SO and 8-pin MicroSO packages
- ♦ Wide operating temperature 40°C to +85°C

Also included is a watchdog timer to stop and restart a microprocessor that is "hung-up". Three watchdog timeout periods are selectable: 150ms, 610ms and 1,200ms. If the ST input is not strobed LOW before the time-out period expires, a reset is issued.

Devices are available in 8-pin DIP, 8-pin SO and compact 8-pin MicroSO packages.


Block Diagram

Pin Configuration

DIP/SO/MicroSO

Pin Descriptions

Pin Number				
8-Pin Package	Name	Function		
1	PBRST	Debounced manual pushbutton reset input		
2	TD	Watchdog time delay selection. (t_{TD} = 150ms for TD = GND, t_{TD} = 610ms for TD = Open, and t_{TD} =1200ms for TD = V _{CC})		
3	TOL	Selects 10% (TOL connected to GND) or 20% (TOL connected to V_{CC}) trip point tolerance		
4	GND	Ground		
5	RESET	Active HIGH reset output. RESET is active:		
		1. If V _{CC} falls below the reset voltage trip point.		
		2. If PBRST is LOW.		
		3. If \overline{ST} is not strobed LOW before the timeout period set by TD expires.		
		4. During power-up.		
6	RESET	Active LOW reset output. (See RESET)		
7	ST	Strobe Input		
8	V _{CC}	5V power		

Ordering Information

Part Number	Package	Operating Temperature Range	Maximum Supply Current (µA)	Voltage Monitoring Application
IMP1832	8-DIP	-40°C to 85°C	20	3.3V
IMP1832S	8-SO	-40°C to 85°C	20	3.3V
IMP1832SEMA	8-MicroSO	-40°C to 85°C	20	3.3V

1832_t01.eps

Absolute Maximum Ratings

Voltage on V_{CC} 0.5V to 7V	
Voltage on $\overline{\text{ST}}$, TD0.5V to V _{CC} + 0.5V	
Voltage on \overline{PBRST} , RESET, \overline{RESET} 0.5V to V _{CC} + 0.5V	
Operating Temperature Range40°C to 85°C	

Voltages measured with respect to ground.

These are stress ratings only and functional operation is not implied.

Electrical Characteristics

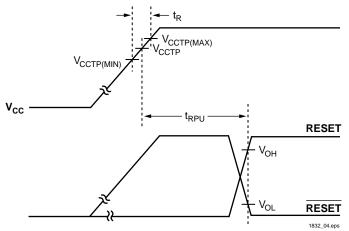
Unless otherwise stated, $1.2V \le V_{CC} \le 5.5V$ and over the operating temperature range of $-40^{\circ}C$ to $+85^{\circ}C$. All voltages are referenced to ground.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Voltage (V _{CC})	V _{CC}		1.0		5.5	V
ST and PBRST Input High Level	VIH	$V_{CC} \ge 2.7V$	2		V _{CC} + 0.3V	V
ST and PBRST Input High Level	V _{IH}	V _{CC} < 2.7V	V _{CC} - 0.4V			V
ST and PBRST Input Low Level	VIL		-0.3		0.5	V
V _{CC} Trip Point (TOL = GND)	V _{CCTP}		2.80	2.88	2.97	V
V_{CC} Trip Point (TOL = V_{CC})	V _{CCTP}		2.47	2.55	2.64	V
Watchdog Time-Out Period	t _{TD}	TD = GND	62.5	150	250	ms
Watchdog Time-Out Period	t _{TD}	$TD = V_{CC}$	500	1200	2000	ms
Watchdog Time-Out Period	t _{TD}	TD floating	250	610	1000	ms
Output Voltage	V _{OH}	$I = -500 \mu A, V_{CC} < 2.7 V$	V _{CC} - 0.3V	V _{CC} - 0.1V		V
Output Current	I _{OH}	Output = 2.4V, $V_{CC} \ge 2.7V$		350		μA
Output Current	I _{OL}	Output = 0.4V, $V_{CC} \ge 2.7V$	10			mA
Input Leakage	١ _{١L}		-1.0		1.0	μA
RESET Low Level	V _{OL}				0.4	V
Internal Pull-Up Resistor		PBRST pin		40		kΩ
Operating Current	I _{CC1}	Outputs open. $V_{CC} \le 3.6V$ and all inputs at V_{CC} or GND			20	μΑ
Input Capacitance	C _{IN}				5	pF
Output Capacitance	C _{OUT}				7	pF
PBRST Manual Reset Minimum Low Time	t _{PB}	PBRST = V _{IL}	20			ms
Reset Active Time	t _{RST}		250	610	1000	ms
ST Pulse Width	t _{ST}	Must not exceed t _{RD} minimum. Watchdog cannot be disabled.	20			ns
V _{CC} Fail Detect to RESET or RESET	t _{RPD}	Pulses < 2µs at V _{CCTP} minimum will not cause reset.		5	8	μs
V _{CC} Slew Rate	t _F		20			μs
PBRST Stable LOW to RESET and RESET Active	t _{PDLY}				20	ms
V _{CC} Detect to RESET or RESET Inactive	t _{RPU}	t _{rise} = 5μs	250	610	1000	ms
V _{CC} Slew Rate	t _R		0			ns

Application Information

Supply Voltage Monitor

The IMP1832 monitors the microprocessor or microcontroller power supply and issues reset signals, both active HIGH and active LOW, that halt processor operation whenever the power supply voltage levels are outside a predetermined tolerance.


Tolerance levels are set with the TOL pin.

RESET and $\overrightarrow{\text{RESET}}$ signals are generated at the last moment of a valid V_{CC} signal. On power-up, both reset signals are active for a minimum of 250ms after the supply has returned to intolerance level. This allows the power supply and monitored processor to stabilize before instruction execution is allowed to begin.

Trip Point Tolerance Selection

With TOL connected to V_{CC} , RESET and RESET become active whenever V_{CC} falls below 2.64V. RESET and RESET become active when V_{CC} falls below 2.98V if TOL is connected to ground.

After V_{CC} has risen above the trip point set by TOL, RESET and RESET remain active for a minimum time period of 250ms.

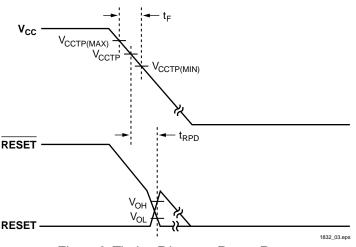
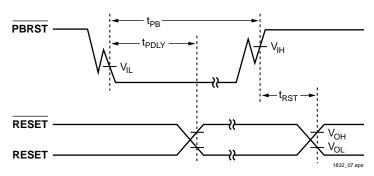
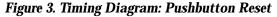


Figure 2. Timing Diagram: Power Down

On power-down, once V_{CC} falls below the reset threshold RESET stays LOW and is guaranteed to be 0.4V or less until V_{CC} drops below 1.2V. The active HIGH reset signal is valid down to a V_{CC} level of 1.2V also.

Tolerance		TRIP Point Voltage (V)				
Select	Tolerance	Min	Nominal	Max		
$TOL = V_{CC}$	20%	2.47	2.55	2.64		
TOL = GND	10%	2.80	2.88	2.97		
				1832 t02.eps		


Manual Reset Operation

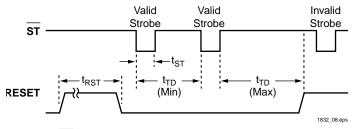

Push-button switch input, \overline{PBRST} , allows the user to override the internal trip point detection circuits and issue reset signals. The pushbutton input is debounced and is pulled HIGH through an internal $40k\Omega$ resistor.

When $\overline{\text{PBRST}}$ is held LOW for the minimum time t_{PB} , both resets become active and remain active for a minimum time period of 250ms after $\overline{\text{PBRST}}$ returns HIGH.

The debounced input is guaranteed to recognize pulses greater than 20ms. No external pull-up resistor is required, since \overrightarrow{PBRST} is pulled HIGH by an internal 40k Ω resistor.

The PBRST can be driven from a TTL or CMOS logic line or shorted to ground with a mechanical switch.




Figure 4. Application Circuit: Pushbutton Reset

Watchdog Timer and ST Input

A watchdog timer stops and restarts a microprocessor that is "hung-up". Through the time delay input, TD, three watchdog time-out periods are selectable: 150ms, 610ms and 1,200ms. If the strobe input, ST, is not strobed LOW prior to timeout, reset signals become active. On power-up or after the supply voltage returns to an in-tolerance condition, the reset signal remains active for 250ms minimum, allowing the power supply and system microprocessor to stabilize.

ST Pulses as short as 20ns can be detected.

Note: ST is ignored whenever a reset is active.

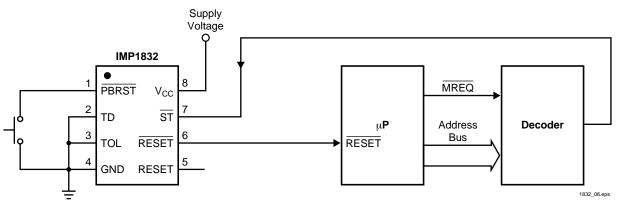
Figure 5. Timing Diagram: Strobe Input

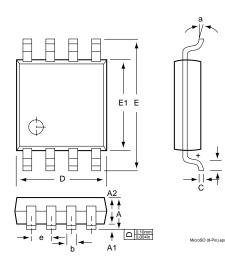
A HIGH-to-LOW \overline{ST} signal transition must be regularly issued no later than the minimum time-out period defined by the state of the TD signal. This guarantees the watchdog timer does not time-out.

Timeouts periods of approximately 150ms, 610ms or 1,200ms are selected through the TD pin.

TD Voltage Level	Watchdog Time-Out Period (ms)			
TD Voltage Level	Min	Nominal	Max	
GND	62.5	150	250	
Floating	250	610	1000	
V _{CC}	500	1200	2000	
1832_t03.eps				

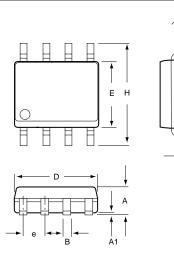
The watchdog timer can not be disabled. It must be strobed with a high-to-low transition to avoid a watchdog timeout and reset.



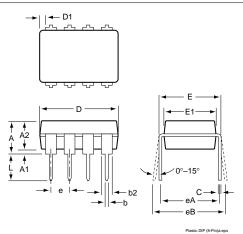

Figure 6. Application Circuit: Watchdog Timer

Package Dimensions

MicroSO (8-Pin)



SO (8-Pin)


0°- 8°

-|| ℃

SO (8-Pin).ep

Plastic DIP (8-Pin)

Inches		Millimeters			
	Min	Max	Min	Max	
MicroSO (8-Pin)*					
Α		0.0433		1.10	
A1	0.0020	0.0059	0.050	0.15	
A2	0.0295	0.0374	0.75	0.95	
b	0.0098	0.0157	0.25	0.40	
С	0.0051	0.0091	0.13	0.23	
D	0.1142	0.1220	2.90	3.10	
е	0.025	6 BSC	0.65	BSC	
Е	0.193	BSC	4.90	BSC	
E1	0.1142	0.1220	2.90	3.10	
L	0.0157	0.0276	0.40	0.70	
а	0°	6°	0°	6°	
		SO (8-P	in)**		
А	0.053	0.069	1.35	1.75	
A1	0.004	0.010	0.10	0.25	
В	0.013	0.020	0.33	0.51	
С	0.007	0.010	0.19	0.25	
е	0.0)50	1.27		
Е	0.150	0.157	3.80	4.00	
Н	0.228	0.244	5.80	6.20	
L	0.016	0.050	0.40	1.27	
D	0.189	0.197	4.80	2.00	
		Plastic DIP	(8-Pin)***		
Α		0.210		5.33	
A1	0.015		0.38		
A2	0.115	0.195	2.92	4.95	
b	0.014	0.022	0.36	0.56	
b2	0.045	0.070	1.14	1.78	
b3	0.030	0.045	0.80	1.14	
D	0.355	0.400	9.02	10.16	
D1	0.005		0.13		
Е	0.300	0.325	7.62	8.26	
E1	0.240	0.280	6.10	7.11	
е	0.100		2.54		
eA	0.300		7.62		
eВ		0.430		10.92	
eC		0.060			
L	0.115	0.150	2.92	3.81	
* JE	DEC Drawing	MO-187AA		1832_t04.at3	

* JEDEC Drawing MO-187AA ** JEDEC Drawing MS-112AA *** JEDEC Drawing MS-001BA

IMP, Inc. Corporate Headquarters 2830 N. First Street San Jose, CA 95134-2071 Tel: 408-432-9100 Tel: 800-438-3722 Fax: 408-434-0335 e-mail: info@impinc.com http://www.impweb.com

© 1999 IMP, Inc. Printed in USA Publication #: 1015 Revision: B Issue Date: 11/08/99 Type: Preliminary