- Each Channe Integrated Logic
- Switching Speeds Less Than $0.5 \mu \mathrm{~s}$
- $I_{D(O F F)}$ Less Than $500 p A$ Typical at $70^{\circ} \mathrm{C}$
- Effective $r_{\text {DS(ON) }}-5 \Omega$ to 50Ω
- Commercial and Military Temperature Range Operation

Description

The IH5009 series of analog switches were designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed.

Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver. The odd numbered devices are designed to be driven directly from TTL open collector logic (15 volts) while the even numbered devices are driven directly from low level TTL logic (5 volts). Each channel simulates a SPDT switch. SPST switch action is obtained by leaving the diode cathode unconnected; for SPDT action, the cathode should be grounded (0 V). The parts are intended for high performance multiplexing and commutating usage. A logic " 0 " turns the channel ON and a logic " 1 " turns the channel OFF.

Part Number Information

PART NUMBER	CHANNELS	LOGIC LEVEL	PACKAGE	PKG NO.
IH 5009	4	+15	DD, PD	
IH 5010	4	+5	DD, PD	
IH 5011	4	+15	DE, PE	
IH 5012	4	+5	DE, PE	
IH 5014	3	+5	DD, PD	
IH 5016	3	+5	DE, PE	
IH 5017	2	+15	PA	
IH 5018	2	+5	DD, PA	
IH 5019	2	+15	DE, PA	
IH 5020	2	+5	DE, PA	
IH 5022	1	+5	DD, PA	
IH 5024	1	+5	PA	

PA - 8 LEAD PDIP
PD - 14 LEAD PDIP
PE - 16 LEAD PDIP
DD - 14 LEAD CERDIP
DE - 16 LEAD CERDIP
TEMPERATURE RANGE
$\mathrm{M}=\operatorname{MILITARY}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
$\mathrm{C}=\mathrm{COMMERCIAL}\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
BASIC PART NUMBER

Functional Diagrams (Numbers in brackets refer to CERDIP Packages)
(14 LEAD CERDIP, 14 LEAD PDIP)

IH5014
(14 LEAD CERDIP, 14 LEAD PDIP)

IH5017 (8 LEAD PDIP)
IH5018 (8 LEAD PDIP, 14 LEAD CERDIP)

IH5022
(8 LEAD PDIP, 14 LEAD CERDIP)

IH5011, IH5012
(16 LEAD CERDIP, 16 LEAD PDIP)

IH5016
(16 LEAD CERDIP, 16 LEAD PDIP)

IH5019, IH5020
(8 LEAD PDIP, 16 LEAD CERDIP)

IH5024
(8 LEAD PDIP)

IH5009 Series

Absolute Maximum Ratings

Positive Analog Signal Voltage . 30 V
Negative Analog Signal Voltage . 15 V
Diode Current 10 mA
Power Dissipation (Note) . 500mW

Thermal Information

Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s). $300^{\circ} \mathrm{C}$

Operating Conditions

Temperature Range
5009C Series . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
5009M Series $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $5 \mathrm{~m} / \mathrm{W}^{\circ} \mathrm{C}$.

Electrical Specifications (Per Channel)

PARAMETER	(NOTE 1) SYMBOL	\square	(NOTE 2) TYPE	$\begin{gathered} -55^{\circ} \mathrm{C}(\mathrm{M}) \\ 0^{\circ} \mathrm{C}(\mathrm{C}) \\ \text { MIN/MAX } \end{gathered}$	$25^{\circ} \mathrm{C}$		$\begin{aligned} & 125^{\circ} \mathrm{C}(\mathrm{M}) \\ & 70^{\circ} \mathrm{C}(\mathrm{C}) \\ & \text { MIN/MAX } \end{aligned}$	UNITS
					TYP	MIN/MAX		
Input Current-ON	$\ln (\mathrm{ON})$	ALL	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	-	0.01	± 0.5	100	$\mu \mathrm{A}$
Input Current-OFF	$\operatorname{lin}(\mathrm{OFF})$	5V Logic Ckts	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V} \end{aligned}$	-	0.04	± 0.5	20	nA
Input Current-OFF	${ }^{\text {IN (OFF }}$)	15V Logic Ckts	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+11 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V} \end{aligned}$	-	0.04	± 0.5	20	nA
Channel Control Voltage-ON	V IN(ON)	5V Logic Ckts	Note 3	0.5	-	0.5	0.5	V
Channel Control Voltage-ON	$\mathrm{V}_{\text {IN(ON }}$)	15V Logic Ckts	Note 3	1.5	-	1.5	1.5	V
Channel Control Voltage-OFF	$\mathrm{V}_{\mathrm{IN}(\mathrm{OFF})}$	5V Logic Ckts	Note 3	-	-	4.5	4.5	V
Channel Control Voltage-OFF	$\mathrm{V}_{\text {IN(OFF }}$	15V Logic Ckts	Note 3	-	-	11.0	11.0	V
Leakage Current-OFF	${ }^{\text {D (OFF }}$)	5V Logic Ckts	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V} \end{aligned}$	-	0.02	± 0.5	20	nA
Leakage Current-OFF	${ }^{\text {D (OFF }}$)	15V Logic Ckts	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+11 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V} \end{aligned}$	-	0.02	± 0.5	20	nA
Leakage Current-ON	${ }^{\text {d }}$ (ON)	5V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	-	0.30	± 1.0	$\begin{aligned} & 1000 \text { (M) } \\ & 200(\mathrm{C}) \end{aligned}$	nA
Leakage Current-ON	${ }^{\text {D (ON }}$)	15V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	-	0.10	± 0.5	$\begin{aligned} & 500(\mathrm{M}) \\ & 100 \text { (C) } \end{aligned}$	nA
Leakage Current-ON	${ }^{\text {D (ON }}$)	5V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$	-	-	1.0	10	$\mu \mathrm{A}$
Leakage Current-ON	${ }^{\text {d }}$ (ON)	15V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$	-	-	2.0	100	$\mu \mathrm{A}$
Drain-Source ON-Resistance	${ }^{\text {r DS(ON) }}$	5V Logic Ckts	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	150	90	150	$\begin{aligned} & 385 \text { (M) } \\ & 240 \text { (C) } \end{aligned}$	Ω
Drain-Source ON-Resistance	${ }^{\text {r }}$ DS(ON)	15V Logic Ckts	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=1.5 \mathrm{~V}$	100	80	100	$\begin{aligned} & 250 \text { (M) } \\ & 160 \text { (C) } \end{aligned}$	Ω
Turn-ON Time	t(ON)	All		-	150	500	-	ns
Turn-OFF Time	${ }^{\text {t }}$ (OFF)	All		-	300	500	-	ns
Cross Talk	CT	All	$\mathrm{f}=100 \mathrm{~Hz}$	-	120	-	-	dB

NOTES:

1. (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
2. Refer to Figure 1 for definition of terms.
3. $\mathrm{V}_{\mathrm{IN}(\mathrm{ON})}$ and $\mathrm{V}_{\mathrm{IN}(\mathrm{OFF})}$ are test conditions guaranteed by the tests of $r_{\mathrm{DS}(\mathrm{ON})}$ and $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ respectively.
4. "5V Logic CKTS" applies to even-numbered devices. "15V Logic CKTS" applies to odd-numbered devices.
