

3.3V CMOS ONE-TO-FOUR ADDRESS/CLOCK DRIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVC16344A

FEATURES:

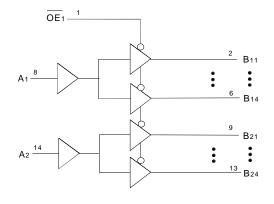
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- VCC = 3.3V ±0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

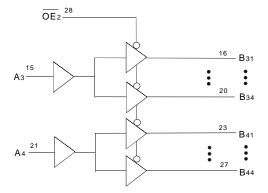
Drive Features for LVC16344A:

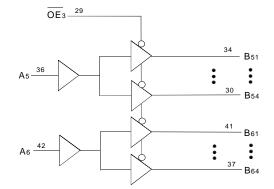
- High Output Drivers: ±24mA
- Reduced system switching noise

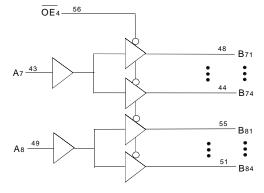
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

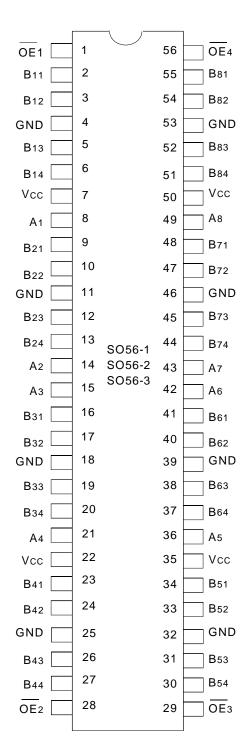

DESCRIPTION:


The LVC16344A is a 1:4 address/clock driver built using advanced dual metal CMOS technology. This high speed, low power device provides the ability to fanout to memory arrays. Eight banks, each with a fanout of 4, and 3-state control provide efficient address distribution. One or more banks may be used for clock distribution.


All pins of this address line driver can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.


The LVC16344A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

Functional Block Diagram



EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
V _{TERM} (2)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
V _{TERM} (3)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	$V_1 < 0$ or $V_0 < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		
		•	LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
ŌĒx	3–State Output Enable Inputs (Active LOW)
Ax	Data Inputs
Вхх	3-State Outputs

FUNCTION TABLE

Inp	Outputs	
<u>ŌE</u> x	Ах	Вхх
L	L	L
L	Н	Н
Н	Х	Z

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	T	est Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	٧
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lıL							
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$V_{CC} = 0V$, V_{IN} or $V_{O} \le 5$	5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = - 18m	A	_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
Iccl	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μΑ
Іссн							
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply	One input at Vcc - 0.6V		_	_	500	μA
	Current Variation	other inputs at Vcc or G	ND				LVC Link

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test (Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	I _{OH} = -0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	I _{OH} = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3.0V	I _{OL} = 24mA	_	0.55	1
	1	1	I	I	1	LVC I

NOTE:

1. VIH and VI∟ must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate VCC range. $TA = -40^{\circ}C$ to $+85^{\circ}C$.

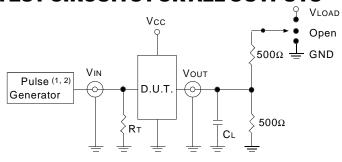
OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per buffer/driver Outputs enabled	C _L = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per buffer/driver Outputs disabled			pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.7V		$V_{CC} = 3.3V \pm 0.3V$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay			1.5	4.3	ns
tphl	Ax to Bxx					
tpzh	Output Enable Time			1.5	5.8	nc
tpzl	OEx to Bxx					ns
tphz	Output Disable Time			1.5	5.2	20
tplz	OEx to Bxx					ns
tsk(b)	Skew between outputs of same bank and			_	350	ps
	same package (same transition)					
tsk(o)	Skew between outputs of all banks of			_	500	ps
	same package (A1 thru A8 tied together) (2)					

NOTES:


- 1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
ViH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

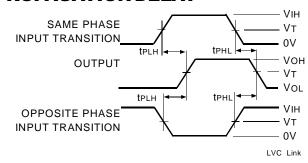
RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTE:

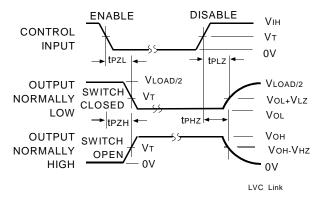
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2ns; tr \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open


LVC Link **OUTPUT SKEW - tsk (x)** Vін INPUT 0V tPLH1 tPHL1 Vон Vт OUTPUT 1 -Vol tsk (x) tsk (x) Vон OUTPUT 2 Voi tpi H2 tPHL2

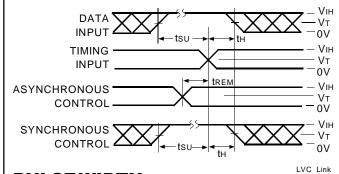
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

ENABLE AND DISABLE TIMES



NOTE:

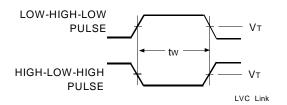
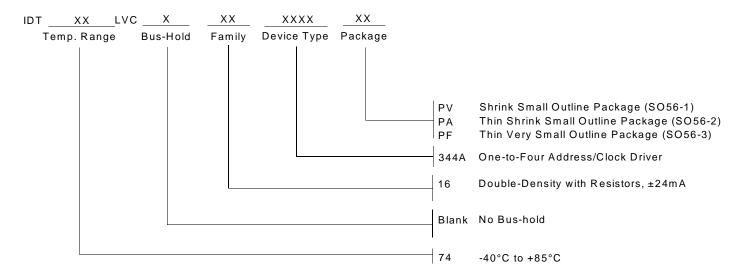

LVC Link

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSE WIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*