32-Channel LCD Driver with Separate Backplane Output

Ordering Information

Device	Package Options		
	44 Lead Quad Plastic Gullwing	44 J-Lead Quad Plastic Chip Carrier	Die in waffle pack
	HV66PG	HV66PJ	HV66X

Features

- Processed with HVCMOS ${ }^{\circledR}$ technology
- 32 push-pull CMOS output up to 60 V
- Low power level shifting
- Source/sink current minimum 1mA
- Shift register speed 5 MHz
\square Latched data outputs
- Bidirectional shift register (DIR)
- Backplane output

Absolute Maximum Ratings ${ }^{1}$

Supply voltage, $\mathrm{V}_{\mathrm{DD}}{ }^{2}$	-0.5 V to +7.0 V
Output voltage, $\mathrm{V}_{\mathrm{PP}}{ }^{2}$	-0.5 V to +70 V
Logic input levels ${ }^{2}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Ground current ${ }^{3}$	1.5 A
Continuous total power dissipation ${ }^{4}$	1200 mW
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead temperature $1.6 \mathrm{~mm}(1 / 16$ inch $)$	$260^{\circ} \mathrm{C}$
from case for 10 seconds	

Notes:

1. Device will survive (but operation may not be specified or guaranteed) at these extremes.
2. All voltages are referenced to V_{SS}.
3. Duty cycle is limited by the total power dissipated in the package.
4. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to $85^{\circ} \mathrm{C}$ at $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

General Description

Not recommended for new designs.

The HV66 is a low-voltage serial to high-voltage parallel converter with push-pull outputs. This device has been designed for use as a driver circuit for LCD displays. It can also be used in any application requiring multiple output high-voltage current sourcing and sinking capabilities. The inputs are fully CMOS compatible.

The device consists of a 32-bit shift register, 32 latches, and control logic to perform blanking and polarity control of the outputs. HVout1 is connected to the first stage of the shift register. Data is shifted through the shift register on the logic rising transition of the clock. A DIR pin causes data shifting clockwise when grounded and counterclockwise when connected to V_{DD}. A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the shift register. Operation of the shift register is not affected by the LE (latch enable), BL (blank) or the POL (polarity) inputs. Transfer of data from the shift register to the latch occurs when the LE (latch enable) input is high. The data in the latch is stored after LE transitions from high to low.

09/30/02

Electrical Characteristics (over recommended operating conditions unless noted)
DC Characteristics ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}$)

Symbol	Parameter		Min	Max	Units	Conditions
I_{DD}	V_{DD} supply current			15	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \max \\ & \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz} \end{aligned}$
$\mathrm{I}_{\mathrm{PPQ}}$	High voltage supply current			0.5	mA	Outputs high
				0.5	mA	Outputs low
$\mathrm{I}_{\text {DDQ }}$	Quiescent $\mathrm{V}_{\text {DD }}$ supply current			0.5	mA	All $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$
V_{OH}	High-level output	Q	50		V	$\mathrm{I}_{0}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=60 \mathrm{~V}$
		Data out	4.6		V	$\mathrm{I}_{\mathrm{o}}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Low-level output	Q		8	V	$\mathrm{I}_{0}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=60 \mathrm{~V}$
		Data out		0.4	V	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$
I_{H}	High-level logic input current			1	$\mu \mathrm{A}$	$\mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}$
	Low-level logic input current			-1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$
$\mathrm{V}_{\text {OLBP }}$	Low-level output voltage, backplane			3	V	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$
$\mathrm{V}_{\text {OHBP }}$	High-level output voltage, backplane		29		V	$\mathrm{I}_{0}=-10 \mathrm{~mA}$

AC Characteristics $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$, logic input rises/fall time $=10 \mathrm{~ns}$.

Symbol	Parameter	Min	Max	Units	Conditions
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency		5	MHz	
$t_{\text {w }}$	Clock width high or low	100		ns	
$t_{S U}$	Data set-up time before clock rises	25		ns	
t_{H}	Data hold time after clock rises	50		ns	
$\mathrm{t}_{\text {ON }}, \mathrm{t}_{\text {OFF }}$	Time from latch enable or POL to $\mathrm{HV}_{\text {OUT }}$		500	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\text {ON }}, \mathrm{t}_{\text {OFF }}$	Time from POL to BP output		500	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\mathrm{DHL}}$	Delay time clock to data high to low		200	ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
$\mathrm{t}_{\text {DLH }}$	Delay time clock to data low to high		200	ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
$\mathrm{t}_{\text {DLE }}$	Delay time clock to LE low to high	50		ns	
$\mathrm{t}_{\text {WLE }}$	Width of LE pulse	100		ns	
$\mathrm{t}_{\text {SLE }}$	LE set-up time before clock rises	50		ns	
$\mathrm{t}_{\mathrm{BR}}, \mathrm{t}_{\mathrm{BF}}$	$\mathrm{BP}_{\text {OUT }}$ rise/fall time	10	1000	$\mu \mathrm{S}$	$\mathrm{C}_{\mathrm{L}}=350 \mathrm{nF}$
$\left\|t_{B R}-t_{B F}\right\|$	$\mathrm{BP}_{\text {OUT }}$ rise and fall difference		100	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=350 \mathrm{nF}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{DD}	Logic supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Output voltage *	0	60	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.4	$\mathrm{~V}_{\mathrm{DD}}$	V
V_{IL}	Low-level input voltage	0	0.8	V
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency	0	5	MHz
T_{A}	Operating free-air temperature	-40	+85	${ }^{\circ} \mathrm{C}$
I_{OD}	Allowable current through output diodes		200	mA

Notes:
*Output will not switch below 12V.
Power-up sequence should be the following:

1. Connect ground.
2. Set all inputs (Data, CLK, Enable, etc.) to a known state.
3. Apply $V_{D D}$.
4. Apply V_{PP}.

Power-down sequence should be the reverse of the above.
The V_{PP} should not drop below V_{DD} during operation.

Switching Waveforms

Functional Block Diagram

Function Table

Function	Inputs						Outputs				
	Data	CLK	LE	BL	POL	DIR	$\begin{aligned} & \text { Shift Reg } \\ & 1 \quad 2 \ldots . .32 \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & 1 \end{aligned}$	$\begin{array}{r} \text { Utputs } \\ 2 \ldots 32 \end{array}$	$\begin{aligned} & \text { Data Out } \\ & 2 \ldots . .32 \end{aligned}$	$\mathrm{BP}_{\star}{ }_{\text {out }}$
Load S/R	H or L	\uparrow	L	H	H	X	H or L *...*	*	*...*	*	H
Load latches	X	H or L	L	H	H	X	* *...*	*	*...*	*	H
	X	H or L	L	H	L	X	* *...*	*	*...*	*	L
Transparent Mode	L	\uparrow	H	H	H	X	L *...*	H	*...*	*	H
	H	\uparrow	H	H	H	X	H *...*	L	*...*	*	H
	L	\uparrow	H	H	L	X	L *...*	L	*...*	*	L
	H	\uparrow	H	H	L	X	H *...*	H	*...*	*	L
R/L Shift	X	\uparrow	X	H	X	H	$\mathrm{Qn} \rightarrow \mathrm{Qn}+1$	*	*...*	Q32	
	X	\uparrow	X	H	X	L	Qn \rightarrow Qn-1	*	*...*	Q1	
Blank Control	X	X	X	L	L	X	* *...*	L	L...L	*	L
	X	X	X	L	H	X	* *...*	H	H...H	*	H

Notes:
$H=$ high level, $L=$ low level, $X=$ irrelevant, $\uparrow=$ low-to-high transition.
${ }^{*}=$ dependent on previous stage's state before the last CLK or last LE high.

Pin Configuration

HV66

44 Pin Plastic Gullwing (QFP) Package

Pin	Function	Pin	Function
1	HV ${ }_{\text {OUT }} 22 / 11$	23	Data Out
2	HV ${ }_{\text {OUT }} 21 / 12$	24	GND
3	HV ${ }_{\text {OUT }} 20 / 13$	25	N/C
4	HV ${ }_{\text {OUT }} 19 / 14$	26	BL
5	HV ${ }_{\text {OUT }} 18 / 15$	27	POL
6	$\mathrm{HV}_{\text {OUT }} 17 / 16$	28	LE
7	HV ${ }_{\text {OUT }} 16 / 17$	29	$V_{\text {D }}$
8	HV ${ }_{\text {OUT }} 15 / 18$	30	Clock
9	HV ${ }_{\text {OUT }} 14 / 19$	31	DIR
10	HV ${ }_{\text {OUT }} 13 / 20$	32	Data In
11	HV ${ }_{\text {OUT }} 12 / 21$	33	$V_{\text {PP }}$
12	HV ${ }_{\text {OUT }} 11 / 22$	34	BP Out
13	HV ${ }_{\text {OUT }} 10 / 23$	35	$\mathrm{HV}_{\text {Out }} 32 / 1$
14	$\mathrm{HV}_{\text {OUT }} 9 / 24$	36	$\mathrm{HV}_{\text {OUT }} 31 / 2$
15	$\mathrm{HV}_{\text {OUT }} 8 / 25$	37	$\mathrm{HV}_{\text {Out }} 30 / 3$
16	$\mathrm{HV}_{\text {OUT }} 7 / 26$	38	$\mathrm{HV}_{\text {Out }} 29 / 4$
17	HV ${ }_{\text {OUT }} 6 / 27$	39	$\mathrm{HV}_{\text {OUT }} 28 / 5$
18	$\mathrm{HV}_{\text {OUT }} 5 / 28$	40	$\mathrm{HV}_{\text {OUT }} 27 / 6$
19	$\mathrm{HV}_{\text {OUT }} 4 / 29$	41	$\mathrm{HV}_{\text {Out }} 26 / 7$
20	$\mathrm{HV}_{\text {OUT }} 3 / 30$	42	$\mathrm{HV}_{\text {OUT }} 25 / 8$
21	$\mathrm{HV}_{\text {OUT }} \mathbf{2 / 3 1}$	43	$\mathrm{HV}_{\text {OUT }} 24 / 9$
22	$\mathrm{HV}_{\text {OUT }}{ }^{1 / 32}$	44	$\mathrm{HV}_{\text {Out }} 23 / 10$

Note:
Pin designation for DIR $=\mathrm{L} / \mathrm{H}$
Example:for DIR $=\mathrm{L}$, Pin 1 is $\mathrm{HV}_{\text {OUT }} 22$ for $\operatorname{DIR}=\mathrm{H}$, Pin 1 is $\mathrm{HV}_{\text {OUT }} 11$

Package Outline

Pin Configuration

Package Outline

HV66			
44 Pin J-Lead Package			
Pin	Function	Pin	Function
1	HV ${ }_{\text {OUT }} 17 / 16$	23	LE
2	HV ${ }_{\text {OUT }} 16 / 17$	24	$V_{\text {D }}$
3	HV ${ }_{\text {OUt }} 15 / 18$	25	Clock
4	HV ${ }_{\text {OUt }} 14 / 19$	26	DIR
5	HV ${ }_{\text {OUt }} 13 / 20$	27	Data In
6	HV ${ }_{\text {OUt }} 12 / 21$	28	$V_{\text {PP }}$
7	HV ${ }_{\text {OUt }} 11 / 22$	29	BP Out
8	HV ${ }_{\text {OUt }} 10 / 23$	30	HV ${ }_{\text {OUt }} 32 / 1$
9	HV ${ }_{\text {OUT }} 9 / 24$	31	HV ${ }_{\text {Out }} 31 / 2$
10	HV ${ }_{\text {OUT }} 8 / 25$	32	HV ${ }_{\text {OUT }} 30 / 3$
11	$\mathrm{HV}_{\text {OUT }} 7 / 26$	33	HV ${ }_{\text {OUT }} 29 / 4$
12	HV ${ }_{\text {OUT }} 6 / 27$	34	HV ${ }_{\text {OUT }} 28 / 5$
13	HV ${ }_{\text {OUT }} 5 / 28$	35	HV ${ }_{\text {OUT }} 27 / 6$
14	HV ${ }_{\text {OUT }} 4 / 29$	36	HV ${ }_{\text {OUT }} 26 / 7$
15	HV ${ }_{\text {OUT }} 3 / 30$	37	HV ${ }_{\text {OUT }} 25 / 8$
16	HV ${ }_{\text {OUT }}$ 2/31	38	HV ${ }_{\text {OUT }} 24 / 9$
17	HV ${ }_{\text {OUT }} 1 / 32$	39	HV ${ }_{\text {OUT }} 23 / 10$
18	Data Out	40	HV OUT $22 / 11$
19	GND	41	HV ${ }_{\text {OUT }} 21 / 12$
20	N/C	42	HV ${ }_{\text {OUT }} 20 / 13$
21	BL	43	HV OUt 19/14
22	POL	44	HV ${ }_{\text {OUT }} 18 / 15$

Note:

1. Pin designation for $\operatorname{DIR}=\mathrm{L} / \mathrm{H}$

Example: for DIR $=$ L, Pin $1=$ HV $_{\text {OUT }} 17$ for DIR $=\mathrm{H}$, Pin $1=$ HV $_{\text {OUT }} 16$

