Dual FIR Filter

The HSP43168/883 Dual FIR Filter consists of two independent 8 -tap FIR filters. Each filter supports decimation from 1 to 16 and provides on-board storage for 32 sets of coefficients. The Block Diagram shows two FIR cells each fed by a separate coefficient bank and one of two separate inputs. The outputs of the FIR cells are either summed or multiplexed by the MUX/Adder. The compute power in the FIR Cells can be configured to provide quadrature filtering, complex filtering, 2-D convolution, 1-D/2-D correlations, and interpolating/decimating filters.

The FIR cells take advantage of symmetry in FIR coefficients by pre-adding data samples prior to multiplication. This allows an 8-tap FIR to be implemented using only 4 multipliers per filter cell. These cells can be configured as either a single 16-tap FIR filter or dual 8-tap FIR filters. Asymmetric filtering is also supported.

Decimation of up to 16 is provided to boost the effective number of filter taps from 2 to 16 times. Further, the Decimation Registers provide the delay necessary for fractional data conversion and 2-D filtering with kernels to 16×16.

The flexibility of the dual is further enhanced by 32 sets of user programmable coefficients. Coefficient selection may be changed asynchronously from clock to clock. The ability to toggle between coefficient sets further simplifies applications such as polyphase or adaptive filtering.

The HSP43168 is a low power fully static design implemented in an advanced CMOS process. The configuration of the device is controlled through a standard microprocessor interface.

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Two Independent 8-Tap FIR Filters Configurable as a Single 16-Tap FIR
- 10-Bit Data and Coefficients
- On-Board Storage for 32 Programmable Coefficient Sets
- Up To: 256 FIR Taps, 16×16 2-D Kernels, or 10×20-Bit Data and Coefficients
- Programmable Decimation to 16
- Programmable Rounding on Output
- Standard Microprocessor Interface
- $33 \mathrm{MHz}, 25.6 \mathrm{MHz}$ Versions

Applications

- Quadrature, Complex Filtering
- Correlation
- Image Processing
- PolyPhase Filtering
- Adaptive Filtering

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HSP43168GM-25/883	-55 to 125	84 Ld PGA	G84.A
HSP43168GM-33/883	-55 to 125	84 Ld PGA	G84.A

Block Diagram

Pinouts

84 PIN PGA
BOTTOM VIEW

Pin Description

NAME	PIN NUMBER	TYPE	DESCRIPTION
V_{CC}	B5, D11, K10, K7, F1		V_{CC} : +5 V power supply pin.
GND	A9, E10, L11, K4, D2		Ground.
CINO-9	$\begin{gathered} \text { E1-3, D1, C1-2, B1-3, } \\ \text { A1 } \end{gathered}$	1	Control/Coefficient Data Bus. Processor interface for loading control data and coefficients. CINO is the LSB.
A0-8	A5-8, B6-8, C6-7	I	Control/Coefficient Address Bus. Processor interface for addressing control and Coefficient Registers. A0 is the LSB.
$\overline{\text { WR }}$	A10	1	Control/Coefficient Write Clock. Data is latched into the Control and Coefficient Registers on the rising edge of $\overline{W R}$.
CSELO-4	A2-4, B4, C5	I	Coefficient Select. This input determines which of the 32 coefficient sets are to be used by FIR A and B. This input is registered and CSELO is the LSB.
INAO-9	$\begin{gathered} \mathrm{K} 1, \mathrm{~J} 1-2, \mathrm{H} 1-2, \mathrm{G} 1-3, \\ \text { F2-3 } \end{gathered}$	I	Input to FIR A. INAO is the LSB.
INB0-9	L1-5, K2-3, K5-6, J5	1/0	Bidirectional Input for FIR B. INBO is the LSB and is input only. When used as output, INB1-9 is the LSB's of the output bus.
OUT9-27	$\begin{aligned} & \text { F9-11, G9-11, H10-11, } \\ & \text { J10-11, J7, K11, K8-9, } \\ & \text { L6-10 } \end{aligned}$	0	19 MSB's of Output Bus. Data format is either unsigned or two's complement depending on configuration. OUT27 is the MSB.
SHFTEN	B11	1	Shift Enable. This active low input enables shifting of data through the Decimation Registers.
$\overline{\text { FWRD }}$	C10	1	Forward ALU Input Enable. When active low, data from the forward decimation path is input to the ALU's through the "a" input. When high, the "a" inputs to the ALUs are zeroed.
$\overline{\text { RVRS }}$	A11	1	Reverse ALU Input Enable. When active low, data from the reverse decimation path is input to the ALU's through the "b" input. When high, the "b" inputs to the ALUs are zeroed.
$\overline{\text { TXFR }}$	C11	1	Data Transfer Control. This active low input switches the LIFO being read into the reverse decimation path with the LIFO being written from the forward decimation path (see Figure 1).
MUX0-1	B9-10	I	Adder/Mux Control. This input controls data flow through the output Adder/Mux. Table 3.0 lists the various configurations.
CLK	E9	1	Clock. All inputs except those associated with the processor interface (CINO-9, A0-8, $\overline{\mathrm{WR}}$) and the output enables $(\overline{\mathrm{OEL}}, \overline{\mathrm{OEH}})$ are registered by the rising edge of CLK.
$\overline{\mathrm{OEL}}$	J6	1	Output Enable Low. This tristate control enables the LSB's of the output bus to INB1-9 when OEL is low.
$\overline{\mathrm{OEH}}$	E11	1	Output Enable High. This tristate control enables OUT9-27 when $\overline{\mathrm{OEH}}$ is low.
ACCEN	D10	1	Accumulate Enable. This active high input allows accumulation in the FIR Cell Accumulator. A low on this input latches the FIR Accumulator contents into the Output Holding Registers while zeroing the feedback path in the accumulator.

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Supply Voltage. +8.0 V
Input, Output or I/O Voltage. GND -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Lead Temperature (Soldering 10s) . $300^{\circ} \mathrm{C}$
ESD Classification . Class 1

Operating Conditions

Operating Voltage Range +4.5 V to +5.5 V Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Die Characteristics

Gate Count
32529 Gates

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

TABLE 1. DC ELECTRICAL PERFORMANCE SPECIFICATIONS

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUB-GROUPS	TEMPERATURE (${ }^{\circ} \mathrm{C}$)	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	2.2	-	V
Logical Zero Input Voltage	V_{IL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\text {A }} \leq 125$	-	0.8	V
Logical One Input Voltage Clock	$\mathrm{V}_{\text {IHC }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	3.0	-	V
Logical Zero Input Voltage Clock	$\mathrm{V}_{\text {ILC }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	2.6	-	V
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-10	+10	$\mu \mathrm{A}$
Output Leakage Current	Io	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-10	+10	$\mu \mathrm{A}$
Standby Power Supply Current	ICCSB	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \text { Outputs Open } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\text {A }} \leq 125$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	IcCop	$\begin{aligned} & f=25.6 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}= \\ & \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{CC}}= \\ & 5.5 \mathrm{~V} \text { (Note 2) } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\text {A }} \leq 125$	-	281.6	mA
Functional Test	FT	(Note 3)	7, 8	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	-	-

NOTES:

2. Interchanging of force and sense conditions is permitted.
3. Operating Supply Current is proportional to frequency, typical rating is $11 \mathrm{~mA} / \mathrm{MHz}$.
4. Tested as follows: $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IH}}$ (clock inputs) $=3.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}$ (all other inputs) $=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$.

TABLE 2. AC ELECTRICAL PERFORMANCE SPECIFICATIONS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	(NOTE 5) CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE (${ }^{\circ} \mathrm{C}$)	(-33MHz)		(-25MHz)		UNITS
					MIN	MAX	MIN	MAX	
CLK Period	T_{CP}		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	30	-	39	-	ns
CLK High	T_{CH}		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	12	-	15	-	ns
CLK Low	T_{CL}		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	12	-	15	-	ns
$\overline{\text { WR Period }}$	$\mathrm{T}_{\text {WP }}$		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	30	-	39	-	ns
$\overline{\text { WR High }}$	$\mathrm{T}_{\text {WH }}$		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	12	-	15	-	ns
$\overline{\text { WR Low }}$	TWL		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	12	-	15	-	ns
Set-up Time; A0-8 to WR Low	TAWS		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	10	-	10	-	ns
Hold Time; A0-8 to WR High	$\mathrm{T}_{\text {AWH }}$		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	1	-	1	-	ns
Set-up Time; CINO-9 to $\overline{\mathrm{WR}}$ High	TCWS		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	12	-	15	-	ns
Hold Time; CINO-9 to $\overline{\text { WR }}$ High	TCWH		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	1.5	-	1.5	-	ns
Set-up Time; $\overline{W R}$ Low to CLK Low	TWLCL	Note 7	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	5	-	8	-	ns
Set-up Time; CINO-9 to CLK Low	TCVCL	Note 7	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	8	-	8	-	ns
Set-up Time; CSEL0-5, SHFTEN, FWRD, $\overline{\text { RVRS }}$, TXFR, MUX0-1 to CLK High	$\mathrm{T}_{\text {ECS }}$		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	15	-	17	-	ns
Hold Time; \qquad CSELO-5, $\overline{\text { SHFTEN }}$, FWRD, $\overline{\text { RVRS }}$, TXFR, MUXO-1 to CLK High	$\mathrm{T}_{\mathrm{ECH}}$		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	0	-	0	-	ns
CLK to Output Delay OUT0-27	TDO		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	15	-	17	ns
Output Enable Time	ToE	Note 6	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	12	-	12	ns

NOTES:

5. AC testing is performed as follows: Input levels (CLK Input) 4.0 V and 0 V ; input levels (all other inputs) 3.0 V and 0 V ; timing reference levels (CLK) 2.0 V ; all others 1.5 V . $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 5.5 V . Output load per test load circuit with $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$. Output transition is measured at $\mathrm{V}_{\mathrm{OH}} \mathrm{Š}>1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}<1.5 \mathrm{~V}$.
6. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage, Output loading per test load circuit, $C_{L}=40 \mathrm{pF}$.
7. Set-up time requirements for loading of data on CINO-9 to guarantee recognition on the following clock.

TABLE 3. ELECTRICAL PERFORMANCE SPECIFICATIONS

PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE (${ }^{\circ} \mathrm{C}$)	(-33MHz)		(-25MHz)		UNITS
					MIN	MAX	MIN	MAX	
Input Capacitance	$\mathrm{ClN}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{CC}}=\text { Open, }$ $\mathrm{f}=1 \mathrm{MHz}$, All measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=25$	-	12	-	12	pF
Output Capacitance	COUT		1	$\mathrm{T}_{\mathrm{A}}=25$	-	12	-	12	pF
Output Disable Time	T_{OD}		1, 2	$-55 \leq \mathrm{T}_{\text {A }} \leq 125$	-	12	-	12	ns
Output Rise Time	t_{R}	From 0.8 V to 2.0 V	1, 2	$-55 \leq T_{A} \leq 125$	-	8	-	8	ns
Output Fall Time	t_{F}	From 2.0 V to 0.8 V	1, 2	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	8	-	8	ns

NOTES:
8. The parameters in Table 3 are controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.
9. Loading is as specified in the test load circuit with $C_{L}=40 \mathrm{pF}$.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C and D	Samples/5005	$1,7,9$

AC Test Load Circuit

Waveforms

OUTPUT ENABLE, DISABLE TIMING

OUTPUT RISE AND FALL TIMES

Burn-In Circuit

NOTES:

1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except V_{CC} and GND.
3. $\mathrm{V}_{\mathrm{CC}}=5.5 \pm 0.5 \mathrm{~V}$.
4. $0.1 \mu \mathrm{f}(\mathrm{Min})$ capacitor between V_{CC} and GND per position.
5. $F 0=100 \mathrm{KHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots, F 16=F 15 / 2$, 40 to 60% duty cycle.
6. Input voltage limits:
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ Max, $\mathrm{V}_{\mathrm{IH}}=4.5 \pm 10 \%$.

PGA PIN	PIN NAME	BURN-IN SIGNAL
A1	CIN8	F9
A2	CSEL4	F12
A3	CSEL3	F11
A4	CSEL1	F9
A5	A8	F12
A6	A7	F10
A7	A4	F11
A8	A1	F12
A9	GND	GND
A10	WRB	F6
A11	RVRS	F12
B1	CIN5	F8
B2	CIN7	F10
B3	CIN9	F10
B4	CSEL2	F10
B5	V_{CC}	V_{CC}
B6	A2	F11
B7	A3	F10
B8	A0	F13
B9	MUX1	F13
B10	MUXO	F12
B11	SHFTEN	F14
C1	CIN4	F7
C2	CIN6	F9
C5	CSELO	F8
C6	A6	F11
C7	A5	F12
C10	FWRD	F13
C11	TXFR	F11
D1	CIN3	F10
D2	GND	GND
D10	ACCEN	F13
D11	$\mathrm{V}_{\text {CC }}$	V_{CC}
E1	CINO	F7
E2	CIN1	F8
E3	CIN2	F9
E9	CLK	F0
E10	GND	GND
E11	OEHB	F14
F1	$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$
F2	INA9	F10
F3	INA8	F9

PGA PIN	PIN NAME	BURN-IN SIGNAL
F9	SUM26	$\mathrm{V}_{\mathrm{CC}} / 2$
F10	SUM22	$\mathrm{V}_{\mathrm{CC}} / 2$
F11	SUM27	$\mathrm{V}_{\mathrm{CC}} / 2$
G1	INA6	F7
G2	INA5	F6
G3	INA7	F8
G9	SUM25	$\mathrm{V}_{\mathrm{CC}} / 2$
G10	SUM23	$\mathrm{V}_{\mathrm{CC}} / 2$
G11	SUM24	$\mathrm{V}_{\mathrm{CC}} / 2$
H1	INA4	F5
H2	INA3	F4
H10	SUM20	$\mathrm{V}_{\mathrm{CC}} / 2$
H11	SUM21	$\mathrm{V}_{\mathrm{CC}} / 2$
J1	INA2	F3
J2	INAO	F1
J5	INB3	F4
J6	OELB	F13
J7	SUM9	$\mathrm{V}_{\mathrm{CC}} / 2$
J10	SUM17	$\mathrm{V}_{\mathrm{CC}} / 2$
J11	SUM19	$\mathrm{V}_{\mathrm{CC}} / 2$
K1	INA1	F2
K2	INB8	F9
K3	INB7	F8
K4	GND	GND
K5	INB2	F3
K6	INBO	F1
K7	V_{CC}	V_{CC}
K8	SUM13	$\mathrm{V}_{\mathrm{CC}} / 2$
K9	SUM16	$\mathrm{V}_{\mathrm{CC}} / 2$
K10	V_{CC}	$\mathrm{V}_{\text {cc }}$
K11	SUM18	$\mathrm{V}_{\mathrm{CC}} / 2$
L1	INB9	F10
L2	INB6	F7
L3	INB5	F6
L4	INB4	F5
L5	INB1	F2
L6	SUM11	$\mathrm{V}_{\mathrm{CC}} / 2$
L7	SUM10	$\mathrm{V}_{\mathrm{CC}} / 2$
L8	SUM12	$\mathrm{V}_{\mathrm{CC}} / 2$
L9	SUM14	$\mathrm{V}_{\mathrm{CC}} / 2$
L10	SUM15	$\mathrm{V}_{\mathrm{CC}} / 2$
L11	GND	GND

Die Characteristics

DIE DIMENSIONS:

$314 \times 348 \times 19 \pm 1$ mils

METALLIZATION:

Type: Si-Al or Si-Al-Cu Thickness: 8kÅ

GLASSIVATION:

Type: Nitrox
Thickness: 10kÅ
WORST CASE CURRENT DENSITY:
$1.93 \times 105 \mathrm{~A} / \mathrm{cm} 2$

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Sales Office Headquarters

NORTH AMERICA
Intersil Corporation 7585 Irvine Center Drive Suite 100 Irvine, CA 92618
TEL: (949) 341-7000
FAX: (949) 341-7123

Intersil Corporation 2401 Palm Bay Rd.
Palm Bay, FL 32905
TEL: (321) 724-7000
FAX: (321) 724-7946

EUROPE
Intersil Europe Sarl
Ave. William Graisse, 3
1006 Lausanne
Switzerland
TEL: +41 216140560
FAX: +41 216140579

ASIA

Intersil Corporation
Unit 1804 18/F Guangdong Water Building 83 Austin Road
TST, Kowloon Hong Kong
TEL: +852 27236339
FAX: +852 27301433

