Maxim's $\mathrm{HI}-201 \mathrm{HS}$ is a monolithic, CMOS, quad, single-pole-single-throw (SPST), high-speed analog switch featuring fast switching times (toff, toN $\leq 50 \mathrm{~ns}$) and low on resistance (50Ω max). It is pin compatible with the industry-standard DG201A. Maxim's new high-voltage silicon-gate technology increases the maximum supply-voltage rating to 44 V . This improvement allows continuous operation with $\pm 20 \mathrm{~V}$ supplies, which is not permitted with the original manufacturer's devices. Maxim's HI-201HS operates from dual supplies ranging from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$, or from single supplies from +12 V to +20 V . Logic levels are TL-/CMOS-compatible with single or dual supplies within these ranges. Maxim's HI-201HS is guaranteed not to latch up if power supplies are disconnected while the analog-switch inputs are present, provided the switch continuous-current ratings are not exceeded. When powered up, the HI-201HS will switch analog signals up to the power-supply rails. \qquad Applications Automatic Test Equipment (ATE) Heads-Up Displays Communication Systems Sample-and-Hold Cirçuits Military

—__ Foatures

Guarmiteed Singlo-Supply Operation: +12 V to +20 V

- Guarambed Dual Supplies: $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

Fast Switching Times:
ton $=30 \mathrm{~ns}$
toff $=40 \mathrm{~ns}$
Low, 50Ω Max On Resistance
TTL-ICMOS-Compatible
44V Max Supply Rating

Ordering Information		
PART	temp. Range	PIN-PACKAGE
H13-0201HS-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
H16-0201HS-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
H11-0201HS-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 CERDIP
H10-0201HS-6	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
H13-0201HS-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
H16-0201HS-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
H11-0201HS-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
H17-0201HS-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
H14-0201HS-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mathrm{LCC}^{* *}$

MAXIM
Maxim Intagrated Products

High-Speed, CMOS, Quad, SPST Analog Switch

ABSOLUTE MAXIMUM RATINGS

$V_{+} \ldots \ldots \ldots \ldots$.

GND $\ldots \ldots 25$ Digital Inputs V_{S}, V_{D} (Note 1$) \ldots(V--4 V)$ to $(V++4 V)$ or 30 mA Current (any terminal, except S or D) 30 mA Continuous Current, S or D 20 mA Peak Current, Sor D (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max) 40 mA

Continuous Power Dissipation ($\mathrm{TA}=+70^{\circ} \mathrm{C}$, Note 2) 16-Pin DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).
16 -Pin Wide SO (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ 16 -Pin Wide SO (derate $9.52 \mathrm{~m} W^{\circ}$ above $+700^{\circ} \ldots 762 \mathrm{~mW}$ $20-$ Pin LCC (derate $9.09 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots 800 \mathrm{~mW}$ Operating Temperature Ranges: HI-0201HS-5/-6 HI-0201HS-5/-6
H1-0201HS-9. HI-0201HS-2/-8 Storage Temperature Rang
$1 . .$.
$\cdots \cdots,-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10 coc) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C},+300^{\circ} \mathrm{C}$

Note 1: Signals on Sx , Dx , or INx exceeding $\mathrm{V}+$ or V - are clamped by internal diodes. Limit forward current to maximum curren Note 2: All leads soldered or welded to PC board

Stresses beyond those iisted under "Absolute Maximum Ratings" may cause permanent damage to the device These are stress ratings only, and functional
operation of the device at these or any other condifions beyond those indicated in the operational sections of the specifications is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS		H1-201HS-2/-8			HI-201HS-5/-6/-9			UNITS
				$\begin{array}{\|c} \text { MIN } \\ \text { (Note 3) } \end{array}$	$\begin{aligned} & \text { TYP } \\ & \text { (Note 4) } \end{aligned}$	Max	$\begin{gathered} \text { MIN } \\ \text { (Note 3) } \end{gathered}$	$\underset{\text { (Note 4) }}{\text { TYP }}$	max	
SWITCH										
Analog-Signal Range	VANALOG			-15		15	-15		15	V
Drain-Source On Resistance (Note 5)	'os (on)	$V_{D}= \pm 10 \mathrm{~V}$,	$\mathrm{IN}=0.8 \mathrm{~V}, \mathrm{Is}=1 \mathrm{~mA}$		30	50		30	50	Ω
Source-Off Leakage Current	Is (off)	$\mathrm{V}_{1 \mathrm{~N}}=3.0 \mathrm{~V}$	$V_{S}=14 \mathrm{~V}, V_{D}=-14 \mathrm{~V}$	-1	± 0.01	1	-1	± 0.01	1	nA
			$V_{S}=-14 \mathrm{~V}, V_{D}=14 \mathrm{~V}$	-1	± 0.02	1	-1	± 0.02	1	
Drain-Off Leakage Current	10 (oft)	$\mathrm{VIN}=3.0 \mathrm{~V}$	$V_{D}=14 \mathrm{~V}, V_{S}=-14 \mathrm{~V}$	-1	± 0.01	1	-1	± 0.01	1	nA
			$V_{D}=-14 \mathrm{~V}, V_{S}=14 \mathrm{~V}$	-1	± 0.02	1	-1	± 0.02	1	
Drain-On Leakage Current (Note 6)	ID (on)	$V_{D}=-14 \mathrm{~V}, V_{\mathbb{N}}=0.8 \mathrm{~V}$		-1	± 0.10	1	-1	± 0.10	1	nA
		$\mathrm{V}_{\mathrm{D}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}$		-1	± 0.15	1	-1	± 0.15	1	
LOGIC INPUT										
Input Current with Input Voltage High	IINH	$\mathrm{V} / \mathrm{N}=3.0 \mathrm{~V}$		-1	0	1	-1	0	1	$\mu \mathrm{A}$
		V IN $=15 \mathrm{~V}$		-1	0	1	-1	0	1	
Input Current with Input Voltage Low	IINL	$V_{I N}=0.8 V$		-1	0	1	-1	0	1	$\mu \mathrm{A}$

High-Speed, CMOS, Quad, SPST Analog Switch

ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)										
PARAMETER	SYMBOL	CONDITIONS		H1-201HS-2-8			HI-201HS-5/-6/-9			UNITS
				$\underset{(\text { Note 3) }}{\text { MIN }}$	$\begin{aligned} & \text { TYP } \\ & \text { (Note 4) } \end{aligned}$	MAX	$\begin{gathered} \text { MIN } \\ \text { (Note 3) } \end{gathered}$	$\begin{aligned} & \text { TYP } \\ & \text { (Note 4) } \end{aligned}$	MAX	
DYNAMIC										
Turn-On Time	ton	Figure 6			30	50		30	50	ns
Turn-Off Time	toff	Figure 6			40	50		'40	50	ns
	toff2				150			150		
Output Settling Time					180			180		ns
Charge Injection	Q	$C_{L}=1000 p F, V_{G E N}=0 V$, Rgen $=0 \Omega$			10			10		pC
Source-Off Capacitance	Cs (oft)	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{~V}_{1} \mathrm{~N}=5 \mathrm{~V}$	$\mathrm{f}=140 \mathrm{kHz}$		10			10		pF
Drain-Off Capacitance	$\mathrm{CD}_{\mathrm{D} \text { (off) }}$	$V_{S}=0 \mathrm{~V}, \mathrm{~V}_{1}=5 \mathrm{~V}$	$\mathrm{f}=140 \mathrm{kHz}$		10			10		pF
Channel-On Capacitance	$\begin{aligned} & {\mathrm{CD}(\mathrm{on})^{+}}^{\mathrm{CS}(\mathrm{n})} \\ & \hline \end{aligned}$	$V_{D}=V_{S}=O V, V / N=O V$	$\mathrm{f}=140 \mathrm{kHz}$		30			30		pF
Off Isolation		$V_{I N}=3 V_{\text {RMS }}, Z 2=1 \mathrm{k} \Omega, f=100 \mathrm{kHz}$			72			72		dB
Crosstalk (Channel-to-Channel)		$V_{S}=2.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$			90			90		dB
SUPPLY										
Positive Supply Current	$1+$	All channels on or off		-3.0	3.8	6.5	-3.0	3.8	6.5	mA
Negative Supply Current	\|-				1.0			1.0		mA
Power-Supply Range for Continuous Operation	Vop	(Note 5)		± 4.5		± 20	± 4.5		± 20	V

High-Speed, CMOS, Quad, SPST Analog Switch

SHLOZ-IH

ELECTRICAL CHARACTERIStICS
$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

High-Speed, CMOS, Quad, SPST Analog Switch

Protecting Against

 Fault ConditionsFault conditions occur when power supplies are turned off and input signals are still present, or when overvol tages occur at the inputs during normal operation. In either case, source-to-body diodes can be forward biased and conduct current from the signal source. If this current must be kept at low ($\mu \mathrm{A}$) levels, we recommend adding external protection diodes (Figure 1).

To provide protection for overvoltages up to 20 V above the supplies, place a 1 N4001 or 1N914 type diode in series with the positive and negative supplies, as show in Figure 1. Adding these diodes will reduce the analog signal range to 1 V below the positive supply and 1 V above the negative supply

Figure 2. On Resistance

Figure 3. On Leakage Current

Figure 4. Off Leakage Current

High-Speed, CMOS, Quad, SPST Analog Switch

High-Speed, CMOS, Quad, SPST Analog Switch

High-Speed, CMOS, Quad, SPST Analog Switch

