HD66702

(Dot Matrix Liquid Crystal Display Controller/Driver) HITACHI

Description

The HD66702 dot-matrix liquid crystal display controller and driver LSI displays alphanumerics, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4- or 8-bit microprocessor. Since all the functions required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.

A single HD66702 can display up to two 20-character lines.
The low 3-V power supply of the HD66702 under development is suitable for any portable battery-driven product requiring low power dissipation.

Features

- 5×7 and 5×10 dot matrix possible
- 80×8-bit display RAM (80 characters max.)
- 7,200-bit character generator ROM
- 160 character fonts (5×7 dot)
- 32 character fonts $(5 \times 10$ dot $)$
- 64×8-bit character generator RAM
- 8 character fonts (5×7 dot)
- 4 character fonts $(5 \times 10$ dot $)$
- 16 -common $\times 100$-segment liquid crystal display driver
- Programmable duty cycles
- $1 / 8$ for one line of 5×7 dots with cursor
- $1 / 11$ for one line of 5×10 dots with cursor
- $1 / 16$ for two lines of 5×7 dots with cursor

HD66702

- Maximum display characters
- One line
$1 / 8$ duty cycle, 20 -char. $\times 1$-line
$1 / 11$ duty cycle, 20 -char. $\times 1$-line
— Two lines
$1 / 16$ duty cycle, 20 -char. $\times 2$-line
- Wide range of instruction functions
- Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Choice of power supply $\left(\mathrm{V}_{\mathrm{cc}}\right): 4.5$ to 5.5 V (standard), 2.7 to 5.5 V (low voltage)
- Automatic reset circuit that initializes the controller/driver after power on (standard version only)
- Independent LCD drive voltage driven off of the logic power supply $\left(\mathrm{V}_{\mathrm{CC}}\right): 3.0$ to 8.3 V
- Low power dissipation
- LQFP2020-144-pin, chip, chip wtith bump

Ordering Information

Type No.	Package	Operating Voltage	ROM Font
HCD66702RA00L	144-pin-chip	2.7 to 5.5 V	Standard Japanese
HCD66702RA00BP	144-pin-chip with bump	2.7 to 5.5 V	Standard Japanese
HCD66702RA01L	144-pin-chip	2.7 to 5.5 V	Communication system
HCD66702RA02L	144-pin-chip	2.7 to 5.5 V	European font
HD66702RA00F	FP-144A	4.5 to 5.5 V	Standard Japanese
HD66702RA00FL	FP-144A	2.7 to 5.5 V	Standard Japanese
HD66702RA01F	FP-144A	4.5 to 5.5 V	Communication font
HD66702RA02F	FP-144A	4.5 to 5.5 V	European font

LCD-II Family Comparison

Item	$\begin{aligned} & \text { LCD-II } \\ & \text { (HD44780U) } \end{aligned}$	HD66702	HD66710	HD66712U
Power supply voltage	2.7 V to 5.5 V	$\begin{aligned} & 5 \mathrm{~V} \pm 10 \% \\ & \text { (standard) } \\ & 2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \text { (low voltage) } \end{aligned}$	2.7 V to 5.5 V	2.7 V to 5.5 V
Liquid crystal drive voltage	3.0 V to 11 V	3.0 V to 8.3V	3.0 V to 13.0 V	2.7 V to 11.0V
Maximum display digits per chip	8 characters $\times 2$ lines	20 characters $\times 2$ lines	16 characters \times 2 lines/ 8 characters \times 4 lines	24 characters \times 2 lines/ 12 characters \times 4 lines
Segment display	None	None	40 segments	60 segments
Display duty cycle	1/8, 1/11, and 1/16	1/8, 1/11, and 1/16	1/17 and 1/33	1/17 and 1/33
CGROM	$\begin{aligned} & 9,920 \text { bits } \\ & (2085 \times 8 \text { dot } \\ & \text { characters and } 32 \\ & 5 \times 10 \text { dot } \\ & \text { characters }) \end{aligned}$	$\begin{aligned} & \hline 7,200 \text { bits } \\ & (1605 \times 7 \text { dot } \\ & \text { characters and } 32 \\ & 5 \times 10 \text { dot } \\ & \text { characters }) \end{aligned}$	$\begin{aligned} & \hline 9,600 \text { bits } \\ & (2405 \times 8 \text { dot } \\ & \text { characters }) \end{aligned}$	$\begin{aligned} & \hline 9,600 \text { bits } \\ & (2405 \times 8 \text { dot } \\ & \text { characters }) \end{aligned}$
CGRAM	64 bytes	64 bytes	64 bytes	64 bytes
DDRAM	80 bytes	80 bytes	80 bytes	80 bytes
SEGRAM	None	None	8 bytes	16 bytes
Segment signals	40	100	40	60
Common signals	16	16	33	34
Liquid crystal drive waveform	A	B	B	B
Bleeder resistor for LCD power supply	External (adjustable)	External (adjustable)	External (adjustable)	External (adjustable)
Clock source	External resistor or external clock			
R_{f} oscillation frequency (frame frequency)	$270 \mathrm{kHz} \pm 30 \%$ (59 to 110 Hz for $1 / 8$ and $1 / 16$ duty cycle; 43 to 80 Hz for $1 / 11$ duty cycle)	$320 \mathrm{kHz} \pm 30 \%$ (70 to 130 Hz for $1 / 8$ and $1 / 16$ duty cycle; 51 to 95 Hz for $1 / 11$ duty cycle)	$270 \mathrm{kHz} \pm 30 \%$ (56 to 103 Hz for 1/17 duty cycle; 57 to 106 Hz for $1 / 33$ duty cycle)	$270 \mathrm{kHz} \pm 30 \%$ (56 to 103 Hz for 1/17 duty cycle; 57 to 106 Hz for 1/33 duty cycle)
R resistance	$91 \mathrm{k} \Omega$: 5-V operation; $75 \mathrm{k} \Omega$: 3-V operation	$68 \mathrm{k} \Omega$: 5-V operation; $56 \mathrm{k} \Omega$: (3-V operation)	$91 \mathrm{k} \Omega$: 5-V operation; $75 \mathrm{k} \Omega$: 3-V operation	$130 \mathrm{k} \Omega$: 5-V operation $110 \mathrm{k} \Omega$: 3-V operation

HD66702

Item	$\begin{aligned} & \text { LCD-II } \\ & \text { (HD44780) } \end{aligned}$	HD66702	HD66710	HD66712U
Liquid crystal voltage booster circuit	None	None	2-3 times step-up circuit	2-3 times step-up circuit
Extension driver control signal	Independent control signal	Independent control signal	Used in common with a driver output pin	Independent control signal
Reset function	Power on automatic reset or Reset input			
Instructions	$\begin{aligned} & \hline \text { LCD-II } \\ & \text { (HD44780) } \end{aligned}$	Fully compatible with the LCD-II	Uppercompatible with the LCD-II	Upper compatible with the LCD-II
Number of displayed lines	1 or 2	1 or 2	1,2 , or 4	1,2, or 4
Low power mode	None	None	Available	Available
Horizontal scroll	Character unit	Character unit	Dot unit	Dot unit
Bus interface	4 bits/8 bits	4 bits/8 bits	4 bits/8 bits	Serial; 4 bits/8 bits
CPU bus timing	$2 \mathrm{MHz}: 5-\mathrm{V}$ operation; 1 MHz : 3-V operation	1 MHz	2 MHz : 5-V operation; 1 MHz : 3-V operation	2 MHz : 5-V operation; 1 MHz : 3-V operation
Package	$\begin{aligned} & \text { QFP-1420-80 } \\ & 80-\text { pin bare chip } \end{aligned}$	LQFP-2020-144 144-pin bare chip	$\begin{aligned} & \text { QFP-1420-100 } \\ & \text { TQFP-1414-100 } \\ & \text { 100-pin bare chip } \end{aligned}$	$\begin{aligned} & \text { TCP-128 } \\ & \text { 128-pin bare chip } \end{aligned}$

HD66702 Block Diagram

HD66702

HD66702 Pad Arrangement

HCD66702 Pad Location Coordinates

Pad No.	Pad Name	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$	Pad No.	Pad Name	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$
1	SEG34	-2475	2350	31	SEG4	-2475	-1600
2	SEG33	-2475	2205	32	SEG3	-2475	-1735
3	SEG32	-2475	2065	33	SEG2	-2475	-1870
4	SEG31	-2475	1925	34	SEG1	-2475	-2010
5	SEG30	-2475	1790	35	GND	-2475	-2180
6	SEG29	-2475	1655	36	OSC2	-2475	-2325
7	SEG28	-2475	1525	37	OSC1	-2445	-2475
8	SEG27	-2475	1395	38	V_{cc}	-2305	-2475
9	SEG26	-2475	1265	39	V_{cc}	-2165	-2475
10	SEG25	-2475	1135	40	V1	-2025	-2475
11	SEG24	-2475	1005	41	V2	-1875	-2475
12	SEG23	-2475	875	42	V3	-1745	-2475
13	SEG22	-2475	745	43	V4	-1595	-2475
14	SEG21	-2475	615	44	V5	-1465	-2475
15	SEG20	-2475	485	45	CL1	-1335	-2475
16	SEG19	-2475	355	46	CL2	-1185	-2475
17	SEG18	-2475	225	47	M	-1055	-2475
18	SEG17	-2475	95	48	D	-905	-2475
19	SEG16	-2475	-35	49	EXT	-775	-2475
20	SEG15	-2475	-165	50	TEST	-625	-2475
21	SEG14	-2475	-295	51	GND	-495	-2475
22	SEG13	-2475	-425	52	RS	-345	-2475
23	SEG12	-2475	-555	53	$\mathrm{R} / \overline{\mathrm{W}}$	-195	-2475
24	SEG11	-2475	-685	54	E	-45	-2475
25	SEG10	-2475	-815	55	DB0	85	-2475
26	SEG9	-2475	-945	56	DB1	235	-2475
27	SEG8	-2475	-1075	57	DB2	365	-2475
28	SEG7	-2475	-1205	58	DB3	515	-2475
29	SEG6	-2475	-1335	59	DB4	645	-2475
30	SEG5	-2475	-1465	60	DB5	795	-2475

Pad No.	Pad Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)	Pad No.	Pad Name	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$
61	DB6	925	-2475	91	SEG88	2475	95
62	DB7	1075	-2475	92	SEG87	2475	225
63	COM1	1205	-2475	93	SEG86	2475	355
64	COM2	1335	-2475	94	SEG85	2475	485
65	COM3	1465	-2475	95	SEG84	2475	615
66	COM4	1595	-2475	96	SEG83	2475	745
67	COM5	1725	-2475	97	SEG82	2475	875
68	COM6	1855	-2475	98	SEG81	2475	1005
69	COM7	1990	-2475	99	SEG80	2475	1135
70	COM8	2125	-2475	100	SEG79	2475	1265
71	COM9	2265	-2475	101	SEG78	2475	1395
72	COM10	2410	-2475	102	SEG77	2475	1525
73	COM11	2475	-2290	103	SEG76	2475	1655
74	COM12	2475	-2145	104	SEG75	2475	1790
75	COM13	2475	-2005	105	SEG74	2475	1925
76	COM14	2475	-1865	106	SEG73	2475	2065
77	COM15	2475	-1730	107	SEG72	2475	2205
78	COM16	2475	-1595	108	SEG71	2475	2350
79	SEG100	2475	-1465	109	SEG70	2320	2475
80	SEG99	2475	-1335	110	SEG69	2175	2475
81	SEG98	2475	-1205	111	SEG68	2035	2475
82	SEG97	2475	-1075	112	SEG67	1895	2475
83	SEG96	2475	-945	113	SEG66	1760	2475
84	SEG95	2475	-815	114	SEG65	1625	2475
85	SEG94	2475	-685	115	SEG64	1495	2475
86	SEG93	2475	-555	116	SEG63	1365	2475
87	SEG92	2475	-425	117	SEG62	1235	2475
88	SEG91	2475	-295	118	SEG61	1105	2475
89	SEG90	2475	-165	119	SEG60	975	2475
90	SEG89	2475	-35	120	SEG59	845	2475

HD66702

Pad No.	Pad Name	$\mathbf{X}(\boldsymbol{\mu m})$	$\mathbf{Y}(\boldsymbol{\mu m})$	Pad No.	Pad Name	$\mathbf{X}(\boldsymbol{\mu m})$	$\mathbf{Y}(\boldsymbol{\mu m})$
121	SEG58	715	2475	133	SEG46	-845	2475
122	SEG57	585	2475	134	SEG45	-975	2475
123	SEG56	455	2475	135	SEG44	-1105	2475
124	SEG55	325	2475	136	SEG43	-1235	2475
125	SEG54	195	2475	137	SEG42	-1365	2475
126	SEG53	65	2475	138	SEG41	-1495	2475
127	SEG52	-65	2475	139	SEG40	-1625	2475
128	SEG51	-195	2475	140	SEG39	-1760	2475
129	SEG50	-325	2475	141	SEG38	-1895	2475
130	SEG49	-455	2475	142	SEG37	-2035	2475
131	SEG48	-585	2475	143	SEG36	-2175	2475
132	SEG47	-715	2475	144	SEG35	-2320	2475

Notes: 1. Coordinates originate from the chip center.
2. The above are preliminary specifications, and may be subject to change.

HD66702

HD66702 Pin Arrangement

Pin Functions

Table 1 Pin Functional Description

Signal	I/O	Device Interfaced with	Function
RS	I	MPU	Selects registers 0 : Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)
$\overline{R / \bar{W}}$	I	MPU	Selects read or write 0 : Write 1: Read
E	I	MPU	Starts data read/write
DB4 to DB7	I/O	MPU	Four high order bidirectional tristate data bus pins. Used for data transfer between the MPU and the HD66702. DB7 can be used as a busy flag.
DB0 to DB3	I/O	MPU	Four low order bidirectional tristate data bus pins. Used for data transfer between the MPU and the HD66702. These pins are not used during 4-bit operation.
CL1	0	Extension driver	Clock to latch serial data D sent to the extension driver
CL2	0	Extension driver	Clock to shift serial data D
M	O	Extension driver	Switch signal for converting the liquid crystal drive waveform to AC
D	O	Extension driver	Character pattern data corresponding to each segment signal
COM1 to COM16	0	LCD	Common signals that are not used are changed to nonselection waveforms. COM9 to COM16 are nonselection waveforms at $1 / 8$ duty factor and COM12 to COM16 are non-selection waveforms at $1 / 11$ duty factor.
SEG1 to SEG100	0	LCD	Segment signals
V1 to V5	-	Power supply	Power supply for LCD drive
V_{cc}, GND	-	Power supply	$\mathrm{V}_{\mathrm{cc}}:+5 \mathrm{~V}$ or +3 V , GND: 0 V
TEST	I	-	Test pin, which must be grounded
EXT	1	-	0: Enables extension driver control signals CL1, CL2, M , and D to be output from its corresponding pins. 1: Drives CL1, CL2, M, and D as tristate, lowering power dissipation.
OSC1, OSC2	-	-	Pins for connecting the registers of the internal clock oscillation. When the pin input is an external clock, it must be input to OSC1.

HD66702

Function Description

Registers

The HD66702 has two 8-bit registers, an instruction register (IR) and a data register (DR).
The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator RAM (CGRAM). The IR can only be written from the MPU.

The DR temporarily stores data to be written into DDRAM or CGRAM. Data written into the DR from the MPU is automatically written into DDRAM or CGRAM by an internal operation. The DR is also used for data storage when reading data from DDRAM or CGRAM. When address information is written into the IR, data is read and then stored into the DR from DDRAM or CGRAM by an internal operation. Data transfer between the MPU is then completed when the MPU reads the DR. After the read, data in DDRAM or CGRAM at the next address is sent to the DR for the next read from the MPU. By the register selector (RS) signal, these two registers can be selected (Table 2).

Busy Flag (BF)

When the busy flag is 1 , the HD66702 is in the internal operation mode, and the next instruction will not be accepted. When $\mathrm{RS}=0$ and $\mathrm{R} / \mathrm{W}=1$ (Table 2), the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0 .

Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the AC. Selection of either DDRAM or CGRAM is also determined concurrently by the instruction.

After writing into (reading from) DDRAM or CGRAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are then output to DB0 to DB6 when $\mathrm{RS}=0$ and $\mathrm{R} / \overline{\mathrm{W}}=1$ (Table $2)$.

Table 2 Register Selection

RS	R/ $/ \mathbf{W}$	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB6)
1	0	DR write as an internal operation (DR to DDRAM or CGRAM)
1	1	DR read as an internal operation (DDRAM or CGRAM to DR)

Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80×8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM. See Figure 1 for the relationships between DDRAM addresses and positions on the liquid crystal display.

The DDRAM address $\left(\mathrm{A}_{\mathrm{DD}}\right)$ is set in the address counter (AC) as hexadecimal.

- 1-line display $(\mathrm{N}=0) \quad$ (Figure 2)
- When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the HD66702, 20 characters are displayed. See Figure 3.
When the display shift operation is performed, the DDRAM address shifts. See Figure 3.

Figure 1 DDRAM Address

Figure 2 1-Line Display

Figure 3 1-Line by 20-Character Display Example

HD66702

- 2-line display $(\mathrm{N}=1)$ (Figure 4)
- Case 1: When the number of display characters is less than 40×2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the HD66702 is used, 20 characters $\times 2$ lines are displayed. See Figure 5.

When display shift operation is performed, the DDRAM address shifts. See Figure 5.

Figure 4 2-Line Display

Figure 5 2-Line by 20-Character Display Example

- Case 2: For a 28 -character $\times 2$-line display, the HD66702 can be extended using one 40 -output extension driver. See Figure 6.
When display shift operation is performed, the DDRAM address shifts. See Figure 6.
Display

DDRAM
address
 display

For shift left	01	02	03	04	05	50	06	07	08	09				COD	D 0		F10			12	13	14	415	16		17	18			1 B	1 C
	41	42	43	44	45	5	46	47	48	49	4A		B4C		D4E	E 4	F 5	50	51	52	53	5	55	56		57	58	59	5 A	5B	5C
For shift right	27	00	01	02	03	30	04	05	06	07	08	09	90			C0		E	OF	10		112	13	14		15	16	17	18	19	1 A
	67	40	41	42	43	34	44	45	46	47	48	49	94	A 4 B	B4C	C4	D 4	E	4F	50	51	15	5	5		55	56	57	58	59	5A

Figure 6 2-Line by 28-Character Display Example

HD66702

Character Generator ROM (CGROM)

The character generator ROM generates 5×7 dot or 5×10 dot character patterns from 8-bit character codes (Table 5). It can generate 1605×7 dot character patterns and 325×10 dot character patterns. User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CGRAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5×7 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write the character codes at the addresses shown as the left column of Table 5 to show the character patterns stored in CGRAM.

See Table 6 for the relationship between CGRAM addresses and data and display patterns.
Areas that are not used for display can be used as general data RAM.

Modifying Character Patterns

- Character pattern development procedure

The following operations correspond to the numbers listed in Figure 7:

1. Determine the correspondence between character codes and character patterns.
2. Create a listing indicating the correspondence between EPROM addresses and data.
3. Program the character patterns into the EPROM.
4. Send the EPROM to Hitachi.
5. Computer processing on the EPROM is performed at Hitachi to create a character pattern listing, which is sent to the user.
6. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and samples are sent to the user for evaluation. When it is confirmed by the user that the character patterns are correctly written, mass production of the LSI proceeds at Hitachi.

Figure 7 Character Pattern Development Procedure

HD66702

- Programming character patterns

This section explains the correspondence between addresses and data used to program character patterns in EPROM. The HD66702 character generator ROM can generate 1605×7 dot character patterns and 325×10 dot character patterns for a total of 192 different character patterns.
-5×7 dot character pattern
EPROM address data and character pattern data correspond with each other to form a 5×7 dot character pattern (Table 3).
Table 3 Example of Correspondence between EPROM Address Data and Character Pattern (5×7 dots)

Notes: 1. EPROM addresses A10 to A3 correspond to a character code.
2. EPROM addresses $A 2$ to $A 0$ specify a line position of the character pattern.
3. EPROM data O 4 to O 0 correspond to character pattern data.
4. A lit display position (black) corresponds to a 1.
5. Line 8 (cursor position) of the character pattern must be blanked with 0 s.
6. EPROM data O 5 to O 7 are not used.

HD66702

- 5×10 dot character pattern

EPROM address data and character pattern data correspond with each other to form a 5×10 dot character pattern (Table 4).

- Handling unused character patterns

1. EPROM data outside the character pattern area: Ignored by the character generator ROM for display operation so 0 or 1 is arbitrary.
2. EPROM data in CGRAM area: Ignored by the character generator ROM for display operation so 0 or 1 is arbitrary.
3. EPROM data used when the user does not use any HD66702 character pattern: According to the user application, handled in one of the two ways listed as follows.
a. When unused character patterns are not programmed: If an unused character code is written into DDRAM, all its dots are lit. By not programing a character pattern, all of its bits become lit. (This is due to the EPROM being filled with 1 s after it is erased.)
b. When unused character patterns are programmed as 0s: Nothing is displayed even if unused character codes are written into DDRAM. (This is equivalent to a space.)

Table 4 Example of Correspondence between EPROM Address Data and Character Pattern (5×10 dots)

Notes: 1. EPROM addresses A10 to A3 correspond to a character code. Set A8 and A9 of character pattern lines 9, 10, and 11 to 0 s .
2. EPROM addresses A 2 to A 0 specify a line position of the character pattern.
3. EPROM data O4 to O0 correspond to character pattern data.
4. A lit display position (black) corresponds to a 1.
5. Blank out line 11 (cursor position) of the character pattern with 0 s .
6. EPROM data O5 to O7 are not used.

HD66702

Table 5 Correspondence between Character Codes and Character Patterns（ROM code：A00）

	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
xxxx0000	$\begin{gathered} \text { CG } \\ \text { RAM } \\ (1) \\ \hline \end{gathered}$		－－1＂：	H：	［－7＇	＂．	！＂－r＇		－	．＂1	프․	＂．．＇：	＋：－
xxxx0001	（2）	I		－－1／	I．．	＋	－－－\＃｜	目	．＇1	＂＇－	：＂	플	＂－1
xxxx0010	（3）	$!!$		苒:	\％	－	；＇－＂	［＇	－＂	1：	，－：＇	－	\％
xxxx0011	（4）	\％		＂－1：	\％	－	－	，	．	＂－7\％	＂10：	＂．．．＂	：－＂：
xxxx0100	（5）	＂	－1－1	＂：	T	－	＋	．	＋1	－	－	！	＂
xxxx0101	（6）	\＃＊＇＊		－	I，	－	！	\＃	－	＂：	\cdots	＂\＃＇	！
xxxx0110	（7）		\|ner		1．1	$\begin{array}{\|l\|l\|} \hline \text { " } \\ \hline 1 \end{array}$	！．：	！	－	\cdots	－	：	\％
xxxx0111	（8）	\＃	"	－	E．	－	！i！	－	－	＂－7	In＋		＂
xxxx1000	（1）		：－n！	－	\％	－	－	．＇	－	－		＂	＇：
xxxx1001	（2）	＂1	－	\mathbf{E}	P．：	t	：	－rn	$\stackrel{\square}{\square}$	！	：	－－！	
xxxx1010	（3）	:"	\＃			I	－	．n．	，	1	－＇	－	＂－2＂
xxxx1011	（4）	－1．	\＃	in		：	＂	－＂	＋＇，	－	I	－＂	＂
xxxx1100	（5）	：	－	$\underline{-}$	H：	I．	！	＋：	－	－1	－＂	＋	［1］
xxxx1101	（6）	\cdots		－	．	\＃＇：	．	\＃－	－－7	＇＂＇：	＂－	\＃	－
xxxx1110	（7）	\＃		EI	\|"		－n	－	＋1\％	\％：＂	＂．＂	：＇1	
xxxx1111	（8）	."'				：－＂：	＋	1：		－1	\＃	＂－．＂	弗

Note：The user can specify any pattern for character－generator RAM．

Table 5 Correspondence between Character Codes and Character Patterns (ROM code: A01)

	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
xxxx0000	$\begin{gathered} \text { CG } \\ \text { RAM } \\ \text { (1) } \\ \hline \end{gathered}$			\#-1/	;in	-	!	:	-n+	."	프…	+1+1	."In
xxxx0001	(2)	!	-	${ }^{-1 /-}$	In,	,	-	\#	!'	"-	"-	+	-
xxxx0010	(3)	I!	"':"	+a:	\%	C-->	!-"	-	-" ${ }^{\text {+ }}$	1:	,-:'	":	:
xxxx0011	(4)	\%	-	!	"Num	-	+	1	.	"		+	-
xxxx0100	(5)	"	-		+	--	-		$\underline{1}$	-	":	H1	!"
xxxx0101	(6)	-	-n+in	$=$	1.	+1.un	I...	\#	-	-	-	!	":
xxxx0110	(7)	:"\%			1.1	+":	!.!		?	"--	-n+	I	-
xxxx0111	(8)	"	$\stackrel{\text { PM }}{ }$	${ }^{\text {an+ }}$	E.	\%	i.i.		H-	-	"int	-	H:
xxxx1000	(1)		:"\#!		-	'	'.,	-'	-1	-	I	!	-"
xxxx1001	(2)	-	"-п!	E	-':	:	:	-	I	-	:	!	\%
xxxx1010	(3)	:-B:	:	...!	-	.	-	E.	1	"	.-'	I	"
xxxx1011	(4)	-	$\stackrel{\text { H }}{\square}$,	-':	:	\cdots	+	\|-m.	I	!	-
xxxx1100	(5)	!	$\stackrel{\square}{1}$		+1/			+:	:	-	".	...'	-
xxxx1101	(6)	\cdots		:	+	'':'	"	\cdots	-"	''-:	".n'	-	- ${ }^{-1}$
xxxx1110	(7)	\#				:"P:	-	-	+10!	:	"."	+	-
xxxx1111	(8)	"•"••"	:"			-	+	1:	!.!	-1!	\#	-:	\#

Table 5 Correspondence between Character Codes and Character Patterns (ROM code: A02)

${ }_{\substack{\text { Lower } \\ \text { 4ibis }}}^{\text {Uppeer } 4 \text { Eits }}$	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1
xxxx0000	$\begin{gathered} \text { CG } \\ \text { RAM } \\ \text { (1) } \\ \hline \end{gathered}$		I'."	-101:	${ }^{\text {P1/-7 }}$	'.	["->"	:		H	-1:	?	\%
xxxx0001	(2)	I	\ldots	--1/	\%	-	-\#\#	:	:	:	-"-1	+	-":
xxxx0010	(3)	!		-	\%	--1	--	E-	"-10	:	:	\#	:
xxxx0011	(4)	\%		${ }^{1}$	"min		프․	+	:	:	-		:
xxxx0100	(5)	- "\%	:-	":	-	-	+	"E:	".".	-	:	.-."	:
xxxx0101	(6)	- ${ }_{\text {\# }}$	-	-	\%	\%	!	를	--1	:	\%		:"0:4
xxxx0110	(7)	\%":	\#\#,	;	1.1	"'	!.!	;		-	H:	\#	\#
xxxx0111	(8)	\#	;	-	E.1	\cdots	!i!	"-B	!	-	-"."	"-7	-
xxxx1000	(1)			Enic	\%:	:	-	"-	+10:	\%	\#	?	\#
xxxx1001	(2)	"		H.	!	!	'...in	-3	+1:	+	":	+	":
xxxx1010	(3)	:-:	\#	.	:		-	-	?	\%	"	Pa	"
xxxx1011	(4)	-	\#	-			!	-\%-	\#	!	":	\#...1	-1
xxxx1100	(5)	!	\because	.n.	"-1		I	"\#-\%	?	$\underline{\square}$	1.:	\pm	!
xxxx1101	(6)	\cdots		in	+	\|':'	I	-"	H\|	\#	-"-"	!	: ${ }_{\text {\% }}$
xxxx1110	(7)	\#					-"."-"	.t.		\#	"-':	-	\%
xxxx1111	(8)	$\text { . }\left.\right\|^{-\quad " ~}$				-1:	+	F:	!	\cdots	+1-\%	\#	'...!

Table 6 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character Patterns (CGRAM Data)

For $\mathbf{5 \times 7} \mathbf{~ d o t ~ c h a r a c t e r ~ p a t t e r n s ~}$				Character pattern Cursor position			
	Character Codes (DDRAM data)	CGRAM Address	Character Patterns (CGRAM data)				
	$\begin{array}{llllllll} \hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \text { High } & & & & & \text { Low } \end{array}$	$\begin{array}{llllll} 5 & 4 & 3 & 2 & 1 & 0 \\ \text { High } & & & & \text { Low } \end{array}$	$\begin{array}{llllllll} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \text { High } & & & & & \text { Low } \end{array}$				
	$0000 * 000$	$\left.\begin{array}{llll:lll}0 & & & 0 & 0 & 0 \\ & & & & 0 & 0 & 0\end{array}\right)$					
	0000 * 0001	$\begin{array}{llll:lll} & & & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ & & & 0 & 0 & 1 \\ & & & 1 & 0 & 0 \\ & & & 1 & 0 & 1 \\ & & & 1 & 1 & 0 \\ & & & 1 & 1 & 1\end{array}$	* * **\|c	lll	l		
		$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}$	* * *				
	$\begin{array}{llllllll}0 & 0 & 0 & 0 & * & 1 & 1\end{array}$	$\begin{array}{lll:lll} 1 & 1 & 1 & 1 & 0 & 0 \\ & & & 1 & 0 & 1 \\ & & & 1 & 1 & 0 \\ & & & 1 & 1 & 1 \end{array}$					

Notes: 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8 th line is the cursor position and its display is formed by a logical OR with the cursor.
Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display.
If the 8th line data is 1,1 bits will light up the 8th line regardless of the cursor presence.
3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left). Since CGRAM data bits 5 to 7 are not used for display, they can be used for general data RAM.
4. As shown Tables 5 and 6, CGRAM character patterns are selected when character code bits 4 to 7 are all 0 . However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00 H or 08 H .
5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.

* Indicates no effect.

HD66702

Table 6 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character Patterns (CGRAM Data) (cont)

Notes: 1. Character code bits 1 and 2 correspond to CGRAM address bits 4 and 5 (2 bits: 4 types).
2. CGRAM address bits 0 to 3 designate the character pattern line position. The 11 th line is the cursor position and its display is formed by a logical OR with the cursor.
Maintain the 11th line data corresponding to the cursor display positon at 0 as the cursor display.
If the 11th line data is 1,1 bits will light up the 11 th line regardless of the cursor presence. Since lines 12 to 16 are not used for display, they can be used for general data RAM.
3. Character pattern row positions are the same as 5×7 dot character pattern positions.
4. CGRAM character patterns are selected when character code bits 4 to 7 are all 0 .

However, since character code bits 0 and 3 have no effect, the P display example above can be selected by character codes $00 \mathrm{H}, 01 \mathrm{H}, 08 \mathrm{H}$, and 09 H .
5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.

* Indicates no effect.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM, CGROM and CGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interferences, such as flickering, in areas other than the display area.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 16 common signal drivers and 100 segment signal drivers. When the character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output non-selection waveforms.

Sending serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DDRAM).

Since serial data is latched when the display data character pattern corresponding to the starting address enters the internal shift register, the HD66702 drives from the head display.

Cursor/Blink Control Circuit

The cursor/blink control circuit generates the cursor or character blinking. The cursor or the blinking will appear with the digit located at the display data RAM (DDRAM) address set in the address counter (AC).

For example (Figure 8), when the address counter is 08 H , the cursor position is displayed at DDRAM address 08 H .

Figure 8 Cursor/Blink Display Example

HD66702

Interfacing to the MPU

The HD66702 can send data in either two 4-bit operations or one 8-bit operation, thus allowing interfacing with 4 - or 8-bit MPUs.

- For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3 are disabled. The data transfer between the HD66702 and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to DB3).
The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.
- For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.

Figure 9 4-Bit Transfer Example

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD66702 when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends $(\mathrm{BF}=1)$. The busy state lasts for 15 ms after V_{CC} rises to 4.5 V , or 40 ms after V_{CC} rises to 2.7 V .

1. Display clear
2. Function set:

DL=1; 8-bit interface data
$\mathrm{N}=0 ; 1$-line display
$\mathrm{F}=0 ; 5 \times 7$ dot character font
3. Display on/off control:
$\mathrm{D}=0$; Display off
C $=0$; Cursor off
$\mathrm{B}=0$; Blinking off
4. Entry mode set:
$\mathrm{I} / \mathrm{D}=1$; Increment by 1
S = 0; No shift
Note: If the electrical characteristics conditions listed under the Table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the HD66702. For such a case, initial-ization must be performed by the MPU as explained in the section, Initializing by Instruction.

HD66702

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD66702 can be controlled by the MPU. Before starting the internal operation of the HD66702, control information is temporarily stored into these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the HD66702 is determined by signals sent from the MPU. These signals, which include register selection (RS), read/write ($\mathrm{R} / \overline{\mathrm{W}}$), and the data bus (DB0 to DB7), make up the HD66702 instructions (Table 7). There are four categories of instructions that:

- Designate HD66702 functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Perform miscellaneous functions

Normally, instructions that perform data transfer with internal RAM are used the most. However, autoincrementation by 1 (or auto-decrementation by 1) of internal HD66702 RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction (Table 12) can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the HD66702 is not in the busy state $(\mathrm{BF}=0)$ before sending an instruction from the MPU to the HD66702. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Table 7 for the list of each instruction execution time.

HD66702

Table 7 Instructions

Instruction	Code										Description	Execution Time (max) (when f_{cp} or$\mathrm{f}_{\text {osc }} \text { is } 320 \mathrm{kHz} \text {) }$
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DDRAM address 0 in address counter.	1.28 ms
Return home	0	0	0	0	0	0	0	0	1	-	Sets DDRAM address 0 in address counter. Also returns display from being shifted to original position. DDRAM contents remain unchanged.	1.28 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	$31 \mu \mathrm{~s}$
Display on/off control	0	0	0	0	0	0	1	D	C	B	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	$31 \mu \mathrm{~s}$
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	-	-	Moves cursor and shifts display without changing DDRAM contents.	$31 \mu \mathrm{~s}$
Function set	0	0	0	0	1	DL	N	F	-	-	Sets interface data length (DL), number of display lines (L), and character font (F).	$31 \mu \mathrm{~s}$
Set CGRAM address	0	0	0	1	ACG	ACG	ACG	ACG	ACG	ACG	Sets CGRAM address. CGRAM data is sent and received after this setting.	$31 \mu \mathrm{~s}$
Set DDRAM address	0	0	1	ADD	Sets DDRAM address. DDRAM data is sent and received after this setting.	$31 \mu \mathrm{~s}$						
Read busy flag \& address	0	1	BF	AC	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	$0 \mu \mathrm{~s}$						

HD66702

Table 7 Instructions (cont)

Note: - indicates no effect.

* After execution of the CGRAM/DDRAM data write or read instruction, the RAM address counter is incremented or decremented by 1. The RAM address counter is updated after the busy flag turns off. In Figure 10, $\mathrm{t}_{\text {ADD }}$ is the time elapsed after the busy flag turns off until the address counter is updated.

Figure 10 Address Counter Update

Instruction Description

Clear Display

Clear display writes space code 20 H (character pattern for character code 20 H must be a blank pattern) into all DDRAM addresses. It then sets DDRAM address 0 into the address counter, and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1 (increment mode) in entry mode. S of entry mode does not change.

Return Home

Return home sets DDRAM address 0 into the address counter, and returns the display to its original status if it was shifted. The DDRAM contents do not change.

The cursor or blinking go to the left edge of the display (in the first line if 2 lines are displayed).

Entry Mode Set

I/D: Increments $(I / D=1)$ or decrements $(I / D=0)$ the DDRAM address by 1 when a character code is written into or read from DDRAM.

The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1 . The same applies to writing and reading of CGRAM.

S: Shifts the entire display either to the right $(\mathrm{I} / \mathrm{D}=0)$ or to the left $(\mathrm{I} / \mathrm{D}=1)$ when S is 1 . The display does not shift if S is 0 .

If S is 1 , it will seem as if the cursor does not move but the display does. The display does not shift when reading from DDRAM. Also, writing into or reading out from CGRAM does not shift the display.

Display On/Off Control

D: The display is on when D is 1 and off when D is 0 . When off, the display data remains in DDRAM, but can be displayed instantly by setting D to 1 .
\mathbf{C} : The cursor is displayed when C is 1 and not displayed when C is 0 . Even if the cursor disappears, the function of I/D or other specifications will not change during display data write. The cursor is displayed using 5 dots in the 8th line for 5×7 dot character font selection and in the 11 th line for the 5×10 dot character font selection (Figure 13).

HD66702

B: The character indicated by the cursor blinks when B is 1 (Figure 13). The blinking is displayed as switching between all blank dots and displayed characters at a speed of $320-\mathrm{ms}$ intervals when f_{cp} or $\mathrm{f}_{\text {osc }}$ is 320 kHz . The cursor and blinking can be set to display simultaneously. (The blinking frequency changes according to $f_{\text {osc }}$ or the reciprocal of $f_{c p}$. For example, when $f c p$ is $270 \mathrm{kHz}, 320 \times 320 / 270=379.2 \mathrm{~ms}$.)

Cursor or Display Shift

Cursor or display shift shifts the cursor position or display to the right or left without writing or reading display data (Table 8). This function is used to correct or search the display. In a 2-line display, the cursor moves to the second line when it passes the 40th digit of the first line. Note that the first and second line displays will shift at the same time.

When the displayed data is shifted repeatedly each line moves only horizontally. The second line display does not shift into the first line position.

The address counter (AC) contents will not change if the only action performed is a display shift.

Function Set

DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB 7 to DB 0) when DL is 1 , and in 4-bit lengths (DB7 to DB4) when DL is 0 .

When 4-bit length is selected, data must be sent or received twice.
\mathbf{N} : Sets the number of display lines (Table 9).
F: Sets the character font (Table 9).
Note: Perform the function at the head of the program before executing any instructions (except for the read busy flag and address instruction). From this point, the function set instruction cannot be executed unless the interface data length is changed.

Set CGRAM Address

Set CGRAM address sets the CGRAM address binary AAAAAA into the address counter.
Data is then written to or read from the MPU for CGRAM.

Clear display	Code		R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Note: * Don't care.
		0	0	0	0	0	0	0	0	0	1	
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Return home	Code	0	0	0	0	0	0	0	0	1	*	
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Entry mode set	Code	0	0	0	0	0	0	0	1	I/D	S	
		RS	$\mathrm{R} / \overline{\mathrm{W}}$	DB7	DB6	DB5	DB4	DB3	DB2		DB0	
Display on/off control	Code	0	0	0	0	0	0	1	D	C	B	

Figure 11

Figure 12

HD66702

Set DDRAM Address

Set DDRAM address sets the DDRAM address binary AAAAAAA into the address counter.
Data is then written to or read from the MPU for DDRAM.

However, when N is 0 (1-line display), AAAAAAA can be 00 H to 4 FH . When N is 1 (2-line display), AAAAAAA can be 00 H to 27 H for the first line, and 40 H to 67 H for the second line.

Read Busy Flag and Address

Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating on a previously received instruction. If BF is 1 , the internal operation is in progress. The next instruction will not be accepted until BF is reset to 0 . Check the BF status before the next write operation. At the same time, the value of the address counter in binary AAAAAAA is read out. This address counter is used by both CG and DDRAM addresses, and its value is determined by the previous instruction. The address contents are the same as for instructions set CGRAM address and set DDRAM address.

Table 8 Shift Function

\mathbf{S} / \mathbf{C}	R/L	
0	0	Shifts the cursor position to the left. (AC is decremented by one.)
0	1	Shifts the cursor position to the right. (AC is incremented by one.)
1	0	Shifts the entire display to the left. The cursor follows the display shift.
1	1	Shifts the entire display to the right. The cursor follows the display shift.

Table 9 Function Set

		No. of Display Lines	Character Font	Duty Factor	Remarks
\mathbf{N}	F	0	1	5×7 dots	$1 / 8$
0	1	1	5×10 dots	$1 / 11$	
1	${ }^{*}$	2	5×7 dots	$1 / 16$	Cannot display two lines for 5×10 dot character font.
Note:	*	Indicates don't care.			

Figure 13 Cursor and Blinking

Figure 14

HD66702

Write Data to CG or DDRAM

Write data to CG or DDRAM writes 8-bit binary data DDDDDDDD to CG or DDRAM.
To write into CG or DDRAM is determined by the previous specification of the CGRAM or DDRAM address setting. After a write, the address is automatically incremented or decremented by 1 according to the entry mode. The entry mode also determines the display shift.

Read Data from CG or DDRAM

Read data from CG or DDRAM reads 8-bit binary data DDDDDDDD from CG or DDRAM.
The previous designation determines whether CG or DDRAM is to be read. Before entering this read instruction, either CGRAM or DDRAM address set instruction must be executed. If not executed, the first read data will be invalid. When serially executing read instructions, the next address data is normally read from the second read. The address set instructions need not be executed just before this read instruction when shifting the cursor by the cursor shift instruction (when reading out DDRAM). The operation of the cursor shift instruction is the same as the set DDRAM address instruction.

After a read, the entry mode automatically increases or decreases the address by 1 . However, display shift is not executed regardless of the entry mode.

Note: The address counter (AC) is automatically incremented or decremented by 1 after the write instructions to CGRAM or DDRAM are executed. The RAM data selected by the AC cannot be read out at this time even if read instructions are executed. Therefore, to correctly read data, execute either the address set instruction or cursor shift instruction (only with DDRAM), then just before reading the desired data, execute the read instruction from the second time the read instruction is sent.

Figure 15

Interfacing the HD66702

Interface to MPUs

- Interfacing to an 8-bit MPU

See Figure 17 for an example of using a I/O port (for a single-chip microcomputer) as an interface device.
In this example, A 0 to A 7 are connected to the data bus DB 0 to DB 7 , and C 0 to C 2 are connected to $\mathrm{E}, \mathrm{R} / \overline{\mathrm{W}}$, and RS, respectively.

Figure 16 Example of Busy Flag Check Timing Sequence

Figure 17 8-bit MPU Interface

HD66702

- Interfacing to a 4-bit MPU

The HD66702 can be connected to the I/O port of a 4-bit MPU. If the I/O port has enough bits, 8-bit data can be transferred. Otherwise, one data transfer must be made in two operations for 4-bit data. In this case, the timing sequence becomes somewhat complex. (See Figure 18.)

See Figure 19 for an interface example to the HMCS43C.
Note that two cycles are needed for the busy flag check as well as for the data transfer. The 4-bit operation is selected by the program.

Figure 18 Example of 4-Bit Data Transfer Timing Sequence

Figure 19 Example of Interface to HMCS43C

Interface to Liquid Crystal Display

Character Font and Number of Lines: The HD66702 can perform two types of displays, 5×7 dot and 5×10 dot character fonts, each with a cursor.

Up to two lines are displayed for 5×7 dots and one line for 5×10 dots. Therefore, a total of three types of common signals are available (Table 10).

The number of lines and font types can be selected by the program. (See Table 7, Instructions.)
Connection to HD66702 and Liquid Crystal Display: See Figure 20 for the connection examples.
Table 10 Common Signals

Number of Lines	Character Font	Number of Common Signals	Duty Factor
1	5×7 dots + cursor	8	$1 / 8$
1	5×10 dots + cursor	11	$1 / 11$
2	5×7 dots + cursor	16	$1 / 16$

Figure 20 Liquid Crystal Display and HD66702 Connections

HD66702

Since five segment signal lines can display one digit, one HD66702 can display up to 20 digits for a 1line display and 40 digits for a 2-line display.

The examples in Figure 20 have unused common signal pins, which always output non-selection waveforms. When the liquid crystal display panel has unused extra scanning lines, connect the extra scanning lines to these common signal pins to avoid any undesirable effects due to crosstalk during the floating state (Figure 21).

Example of a 5×7 dot, 20-character $\times 2$-line display ($1 / 5$ bias, $1 / 16$ duty cycle)
Figure 20 Liquid Crystal Display and HD66702 Connections (cont)

Figure 21 Using COM9 to Avoid Crosstalk on Unneeded Scanning Line

Connection of Changed Matrix Layout: In the preceding examples, the number of lines correspond to the scanning lines. However, the following display examples (Figure 22) are made possible by altering the matrix layout of the liquid crystal display panel. In either case, the only change is the layout. The display characteristics and the number of liquid crystal display characters depend on the number of common signals or on duty factor. Note that the display data RAM (DDRAM) addresses for 10 characters $\times 2$ lines and for 40 characters $\times 1$ line are the same as in Figure 20 .

Figure 22 Changed Matrix Layout Displays

HD66702

Power Supply for Liquid Crystal Display Drive

Various voltage levels must be applied to pins V1 to V5 of the HD66702 to obtain the liquid crystal display drive waveforms. The voltages must be changed according to the duty factor (Table 11).

VLCD is the peak value for the liquid crystal display drive waveforms, and resistance dividing provides voltages V1 to V5 (Figure 23).

Table 11 Duty Factor and Power Supply for Liquid Crystal Display Drive

	Duty Factor	
	$\mathbf{1 / 8}, \mathbf{1 / 1 1}$	$\mathbf{1 / 1 6}$
Power Supply	$\mathbf{1 / 4}$	Bias
V1	$\mathrm{V}_{\mathrm{cc}}-1 / 4 \mathrm{VLCD}$	$\mathrm{V}_{\mathrm{cc}}-1 / 5 \mathrm{VLCD}$
V2	$\mathrm{V}_{\mathrm{cc}}-1 / 2 \mathrm{VLCD}$	$\mathrm{V}_{\mathrm{cc}}-2 / 5 \mathrm{VLCD}$
V3	$\mathrm{V}_{\mathrm{cc}}-1 / 2 \mathrm{VLCD}$	$\mathrm{V}_{\mathrm{cc}}-3 / 5 \mathrm{VLCD}$
V 4	$\mathrm{~V}_{\mathrm{cc}}-3 / 4 \mathrm{VLCD}$	$\mathrm{V}_{\mathrm{cc}}-4 / 5 \mathrm{VLCD}$
V 5	$\mathrm{~V}_{\mathrm{cc}}-\mathrm{VLCD}$	$\mathrm{V}_{\mathrm{cc}}-\mathrm{VLCD}$

Figure 23 Drive Voltage Supply Example

Relationship between Oscillation Frequency and Liquid Crystal Display Frame Frequency

The liquid crystal display frame frequencies of Figure 24 apply only when the oscillation frequency is 320 kHz (one clock pulse of $3.125 \mu \mathrm{~s}$).

Figure 24 Frame Frequency

HD66702

Instruction and Display Correspondence

- 8-bit operation, 20-digit $\times 1$-line display with internal reset

Refer to Table 12 for an example of an 8-bit $\times 1$-line display in 8-bit operation. The HD66702 functions must be set by the function set instruction prior to the display. Since the display data RAM can store data for 80 characters, as explained before, the RAM can be used for displays such as for advertising when combined with the display shift operation.
Since the display shift operation changes only the display position with DDRAM contents unchanged, the first display data entered into DDRAM can be output when the return home operation is performed.

- 4-bit operation, 20-digit $\times 1$-line display with internal reset

The program must set all functions prior to the 4-bit operation (Table 13). When the power is turned on, 8-bit operation is automatically selected and the first write is performed as an 8-bit operation. Since DB0 to DB3 are not connected, a rewrite is then required. However, since one operation is completed in two accesses for 4-bit operation, a rewrite is needed to set the functions (see Table 13). Thus, DB4 to DB7 of the function set instruction is written twice.

- 8 -bit operation, 20 -digit $\times 2$-line display

For a 2-line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line has been written. Thus, if there are only 20 characters in the first line, the DDRAM address must be again set after the 20th character is completed. (See Table 14.) Note that the display shift operation is performed for the first and second lines. In the example of Table 14, the display shift is performed when the cursor is on the second line. However, if the shift operation is performed when the cursor is on the first line, both the first and second lines move together. If the shift is repeated, the display of the second line will not move to the first line. The same display will only shift within its own line for the number of times the shift is repeated.

Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using Internal Reset Circuit table must be satisfied. If not, the HD66702 must be initialized by instructions. (Because the internal reset does not function correctly when V_{CC} is 3 V , it must always be initialized by software.) See the section, Initializing by Instruction.

HD66702

Table 12 8-Bit Operation, 20-Digit \times 1-Line Display Example with Internal Reset

	Instruction											Operation
No.	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Display	
1	Power supply on (the HD66702 is initialized by the internal reset circuit)											Initialized. No display.
2		$\begin{aligned} & \text { tion se } \\ & 0 \end{aligned}$			1	1	0	0	*	*		Sets to 8-bit operation and selects 1 -line display and character font. (Number of display lines and character fonts cannot be changed after step \#2.)
3		a 0	0		0	0	1	1	1	0	\square	Turns on display and cursor. Entire display is in space mode becauce of initialization.
4		mode	set		0	0	0	1	1	0	\square	Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CGRAM. Display is not shifted.
5		data to	o CGR 0	1	RAM 0		1	0	0	0	H-	Writes H. DDRAM already been selected by initialization when the power was turned on. The cursor is incremented by one and shifted to the right.
6	Write data to CGRAM/DDRAM										HI_{-}	Writes I.
7						.						
8	Write data to CGRAM/DDRAM										HITACHI	Writes I.
9	Entry mode set										HITACHI	Sets mode to shift display at the time of write.
10	Write data to CGRAM/DDRAM										ITACHI	Writes a space.

Table 12 8-Bit Operation, 20-Digit \times 1-Line Display Example with Internal Reset (cont)

Step					Instru	uction					Display	Operation
No.	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO		
11	Write data to CGRAM/DDRAM					0	1	1	0	1	TACHIM	Writes M.
	1	0	0	1	0							
12												
13	Write data to CGRAM/DDRAM						1	1	1	1	MICROKO-	Writes O.
	1	0	0	1	0							
14	Cursor or display shift										MICROKO	Shifts only the cursor position to
	0	0	0		0	1	0	0	*	*	Mraok	the left.
15	Cursor or display shift										MICROKO	Shifts only the cursor position to
	0	0	0	0	0	1	0	0	*	*	MCROKِ0	the left.
16	Write data to CGRAM/DDRAM											Writes C over K.
	1	0	0	1	0	0	0	0	1	1	ICROCO	The display moves to the left.
17	Cursor or display shift											Shifts the display and cursor
	0	0	0	0	0	1	1	1	*	*	MICROCO	position to the right.
18	Cursor or display shift											Shifts the display and cursor
	0	0	0	0	0	1	0	1	*	*	MICROCO_	position to the right.
19	Write data to CGRAM/DDRAM											Writes M.
	1	0	0	1	0	0	1	1	0	1	ICROCOM	
20						\cdot						
21	Return home											Returns both display and cursor to the original position(address $0)$.
											HITACHI	
	0	0	0	0	0	0	0	0	1	0		

Table 13 4-Bit Operation, 20-Digit \times 1-Line Display Example with Internal Reset

	Instruction						Display	Operation
No.	RS	R/W	DB7	DB6	DB5	DB4		
1	Power supply on (the HD66702 is initialized by the internal reset circuit)							Initialized. No display.
2		$\begin{gathered} \text { ction set } \\ 0 \end{gathered}$			1	0		Sets to 4-bit operation. In this case, operation is handled as 8 bits by initialization, and only this instruction completes with one write.
3	$\begin{aligned} & \text { Fur } \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { tion se } \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & * \end{aligned}$		Sets 4-bit operation and selects 1 -line display and 5×7 dot character font. 4-bit operation starts from this step and resetting is necessary. (Number of display lines and character fonts cannot be changed after step \#3.)
4	$\begin{aligned} & \text { Dis } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { lay on/o } \\ & 0 \\ & 0 \end{aligned}$	ff contr 0 1	$\begin{array}{r} \text { trol } \\ 0 \\ 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Turns on display and cursor. Entire display is in space mode because of initialization.
5	En 0 0	$\begin{gathered} y \text { mode } \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { set } \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CGRAM. Display is not shifted.
6	Wr 1 1	data to 0 0	CGR 0 1	$\begin{gathered} 3 \mathrm{AM} / \mathrm{D} \\ 1 \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { DRAM } \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	H-	Writes H. The cursor is incremented by one and shifts to the right.

Note: The control is the same as for 8-bit operation beyond step \#6.

Table 14 8-Bit Operation, 20-Digit \times 2-Line Display Example with Internal Reset

HD66702

Table 14 8-Bit Operation, 20-Digit \times 2-Line Display Example with Internal Reset (cont)

HD66702

Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instructions becomes necessary.

Refer to Figures 25 and 26 for the procedures on 8-bit and 4-bit initializations, respectively.

Figure 25 8-Bit Interface

Figure 26 4-Bit Interface

HD66702

[Low voltage version]

Absolute Maximum Ratings*

Item	Symbol	Unit	Value	Notes
Power supply voltage (1)	V_{cc}	V	-0.3 to +7.0	1
Power supply voltage (2)	$\mathrm{V}_{\mathrm{cc}}-\mathrm{V} 5$	V	-0.3 to +8.5	2
Input voltage	Vt	V	-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	1
Operating temperature	$\mathrm{T}_{\text {opr }}$	${ }^{\circ} \mathrm{C}$	-20 to +75	
Storage temperature	$\mathrm{T}_{\text {stg }}$	${ }^{\circ} \mathrm{C}$	-55 to +125	4

Note: 1. The operating temperature is $75^{\circ} \mathrm{C}$.
2. If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.
3. The power supply voltage is $\mathrm{GND}=0 \mathrm{~V}$.
4. Keep $\mathrm{V}_{\mathrm{cc}} \geq \mathrm{V} 5$ (Low), and $\mathrm{V}_{\mathrm{cc}} \geq \mathrm{GND}$ (Low)

DC Characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 7}$ to $\mathbf{5 . 5 V}, \mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}^{*}{ }^{3}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC1)	VIH1	$0.7 \mathrm{~V}_{\text {cc }}$	-	$\mathrm{V}_{\text {cc }}$	V		6, 17
Input low voltage (1) (except OSC1)	VIL1	-0.3	-	0.55	V		6, 17
Input high voltage (2) (OSC1)	VIH2	$0.7 \mathrm{~V}_{\mathrm{cc}}$	-	V_{cc}	V		15
Input low voltage (2) (OSC1)	VIL2	-	-	$0.2 \mathrm{~V}_{\text {cc }}$	V		15
$\begin{aligned} & \hline \text { Output high voltage (1) } \\ & \text { (D0-D7) } \end{aligned}$	VOH 1	$0.75 \mathrm{~V}_{\text {cc }}$	-	-	V	$\mathrm{I}_{\text {OH }}=0.1 \mathrm{~mA}$	7
Output low voltage (1) (D0-D7)	VOL1	-	-	$0.2 \mathrm{~V}_{\text {cc }}$	V	$\mathrm{I}_{\mathrm{oL}}=0.1 \mathrm{~mA}$	7
Output high voltage (2) (except D0-D7)	VOH 2	$0.8 \mathrm{~V}_{\text {cc }}$	-	-	V	$\mathrm{l}_{\mathrm{OH}}=0.04 \mathrm{~mA}$	8
Output low voltage (2) (except D0-D7)	VOL2	-	-	$0.2 \mathrm{~V}_{\text {cc }}$	V	$\mathrm{I}_{\mathrm{oL}}=0.04 \mathrm{~mA}$	8
Driver on resistance (COM)	$\mathrm{R}_{\text {com }}$	-	2	20	k Ω	$\pm \mathrm{ld}=0.05 \mathrm{~mA}$ (COM)	13
Driver on resistance (SEG)	$\mathrm{R}_{\text {sEG }}$	-	2	30	k Ω	$\pm \mathrm{Id}=0.05 \mathrm{~mA}$ (SEG)	13
Input leakage current	I_{L}	-1	-	1	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to V_{cc}	9
Pull-up MOS current (RS, R/ $\bar{W}, ~ D 0-D 7)$	$-l_{p}$	10	50	120	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	
Power supply current	I_{cc}	-	0.15	0.30	mA	R_{t} oscillation, external clock $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{osc}}=320 \mathrm{kHz}$	10, 14
LCD voltage	VLCD1	3.0	-	8.3	V	$\mathrm{V}_{\text {cc }}-\mathrm{V} 5,1 / 5$ bias	16
	VLCD2	3.0	-	8.3	V	$\mathrm{V}_{\text {cc }}$-V5, 1/4 bias	16

Note: * Refer to the Electrical Characteristics Notes section following these tables.

HD66702

AC Characteristics $\left(V_{C C}=2.7\right.$ to 5.5V,$T_{a}=\mathbf{- 2 0}$ to $\left.+75^{\circ} C^{* 3}\right)$

Clock Characteristics

Item		Symbo	Min	Typ	Max	Unit	Test Condition	Notes*
External clock operation	External clock frequency	$\mathrm{f}_{\text {cp }}$	125	270	410	kHz		11
	External clock duty	Duty	45	50	55	\%		
	External clock rise time	$\mathrm{t}_{\text {cpe }}$	-	-	0.2	$\mu \mathrm{s}$		
	External clock fall time	$\mathrm{t}_{\text {cp }}$	-	-	0.2	$\mu \mathrm{s}$		
R_{t} oscillation	Clock oscillation frequency	$\mathrm{f}_{\text {osc }}$	240	320	390	kHz	$\begin{aligned} & \mathrm{R}_{\mathrm{f}}=56 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{cc}}=3 \mathrm{~V} \end{aligned}$	12

Bus Timing Characteristics

Write Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cye }}$	1000	-	-	ns	Figure 27
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{E},}, \mathrm{t}_{\mathrm{EI}}$	-	-	25		
Address set-up time $(\mathrm{RS}, \mathrm{R} / \bar{W}$ to E$)$	t_{AS}	40	-	-		
Address hold time	t_{AH}	20	-	-		
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	195	-	-		
Data hold time	t_{H}	10	-	-		

Read Operation

Item	Symbo	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cye }}$	1000	-	-	ns	Figure 28
Enable pulse width (high level)	$\mathrm{PW}_{\text {EH }}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\text {E }, ~} \mathrm{t}_{\text {Et }}$	-	-	25		
Address set-up time (RS, R/W to E)	$\mathrm{t}_{\text {AS }}$	40	-	-		
Address hold time	$\mathrm{t}_{\text {AH }}$	20	-	-		
Data delay time	$\mathrm{t}_{\text {Dor }}$	-	-	350		
Data hold time	$\mathrm{t}_{\text {OHR }}$	10	-	-		

Interface Timing Characteristics with External Driver

Item	Symbol	Min	Typ	Max	Unit	Test Condition	
Clock pulse width	High level	$\mathrm{t}_{\mathrm{cwH}}$	800	-	-	ns	Figure 29
	Low level	$\mathrm{t}_{\mathrm{cWL}}$	800	-	-		
Clock set-up time		$\mathrm{t}_{\mathrm{csu}}$	500	-	-		
Data set-up time	t_{SU}	300	-	-			
Data hold time	t_{DH}	300	-	-			
M delay time	t_{DM}	-1000	-	1000			
Clock rise/fall time	t_{ct}	-	-	200			

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Power supply rise time	t_{cc}	0.1	-	10	ms	Figure 30
Power supply off time	$\mathrm{t}_{\mathrm{ofF}}$	1	-	-		

[Standard Voltage Version]

Absolute Maximum Ratings*

Item	Symbol	Unit	Value	Notes
Power supply voltage (1)	V_{cc}	V	-0.3 to +7.0	1
Power supply voltage (2)	$\mathrm{V}_{\mathrm{cc}}-\mathrm{V} 5$	V	-0.3 to +8.5	2
Input voltage	Vt	V	-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	1
Operating temperature	$\mathrm{T}_{\text {opr }}$	${ }^{\circ} \mathrm{C}$	-20 to +75	
Storage temperature	$\mathrm{T}_{\text {stg }}$	${ }^{\circ} \mathrm{C}$	-55 to +125	4

Note: * If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability. Refer to the Electrical Characteristics Notes section following these tables.

HD66702

DC Characteristics ($\mathrm{V}_{\mathrm{cc}}=\mathbf{5 V} \pm \mathbf{1 0 \%}, \mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C} *^{3}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC1)	VIH1	2.2	-	$\mathrm{V}_{\text {c }}$	V		6, 17
Input low voltage (1) (except OSC1)	VIL1	-0.3	-	0.6	V		6, 17
Input high voltage (2) (OSC1)	VIH2	$\mathrm{V}_{\mathrm{cc}}-1.0$	-	V_{cc}	V		15
Input low voltage (2) (OSC1)	VIL2	-	-	1.0	V		15
Output high voltage (1) (D0-D7)	VOH 1	2.4	-	-	V	$-\mathrm{l}_{\text {애 }}=0.205 \mathrm{~mA}$	7
$\begin{aligned} & \hline \text { Output low voltage (1) } \\ & \text { (D0-D7) } \end{aligned}$	VOL1	-	-	0.4	V	$\mathrm{I}_{\mathrm{oL}}=1.6 \mathrm{~mA}$	7
Output high voltage (2) (except D0-D7)	VOH 2	$0.9 \mathrm{~V}_{\text {cc }}$	-	-	V	$-_{\text {OH }}=0.04 \mathrm{~mA}$	8
Output low voltage (2) (except D0-D7)	VOL2	-	-	$0.1 \mathrm{~V}_{\mathrm{cc}}$	V	$\mathrm{I}_{\mathrm{oL}}=0.04 \mathrm{~mA}$	8
Driver on resistance (COM)	$\mathrm{R}_{\text {com }}$	-	2	20	k Ω	$\pm \mathrm{ld}=0.05 \mathrm{~mA}$ (COM)	13
Driver on resistance (SEG)	$\mathrm{R}_{\text {sEG }}$	-	2	30	k Ω	$\pm 1 \mathrm{~d}=0.05 \mathrm{~mA}$ (SEG)	13
Input leakage current	I_{4}	-1	-	1	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to V_{cc}	9
Pull-up MOS current (RS, R/W, D0-D7)	$-{ }_{\text {p }}$	50	125	250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	
Power supply current	$\mathrm{I}_{\text {c }}$	-	0.35	0.60	mA	R_{t} oscillation, external clock $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{osc}}=320 \mathrm{kHz}$	10, 14
LCD voltage	VLCD1	3.0	-	8.3	V	$\mathrm{V}_{\mathrm{cc}}-\mathrm{V} 5,1 / 5$ bias	16
	VLCD2	3.0	-	8.3	V	$\mathrm{V}_{\mathrm{cc}}-\mathrm{V} 5,1 / 4$ bias	16

Note: * Refer to the Electrical Characteristics Notes section following these tables.

AC Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \pm \mathbf{1 0 \%}, \mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $+\mathbf{7 5}^{\circ} \mathrm{C}^{* 3}$)
Clock Characteristics

Item		Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
External clock operation	External clock frequency	$\mathrm{f}_{\text {cp }}$	125	270	410	kHz		11
	External clock duty	Duty	45	50	55	\%		11
	External clock rise time	$\mathrm{t}_{\text {cep }}$	-	-	0.2	$\mu \mathrm{s}$		11
	External clock fall time	$\mathrm{t}_{\text {cp }}$	-	-	0.2	$\mu \mathrm{s}$		11
R_{t} oscillation	Clock oscillation frequency	$\mathrm{f}_{\text {osc }}$	220	320	420	kHz	$\begin{aligned} & \mathrm{R}_{\mathrm{t}}=68 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$	12

Bus Timing Characteristics

Write Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\mathrm{cyE}}$	1000	-	-	ns	Figure 27
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Et}}$	-	-	25		
Address set-up time (RS, R/ $\overline{\mathrm{W}}$ to E)	t_{As}	40	-	-		
Address hold time	t_{AH}	10	-	-		
Data set-up time	$\mathrm{t}_{\mathrm{SSW}}$	195	-	-		
Data hold time	t_{H}	10	-	-		

Read Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cye }}$	1000	-	-	ns	Figure 28
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{E},} \mathrm{t}_{\mathrm{Et}}$	-	-	25		
Address set-up time (RS, R/W to E)	$\mathrm{t}_{\text {As }}$	40	-	-		
Address hold time	$\mathrm{t}_{\text {AH }}$	10	-	-		
Data delay time	$\mathrm{t}_{\text {DOR }}$	-	-	320		
Data hold time	$\mathrm{t}_{\text {онн }}$	20	-	-		

Interface Timing Characteristics with External Driver

Item	Symbol	Min	Typ	Max	Unit	Test Condition	
Clock pulse width	High level	$\mathrm{t}_{\mathrm{cWH}}$	800	-	-	ns	Figure 29
	Low level	$\mathrm{t}_{\mathrm{cWL}}$	800	-	-		
Clock set-up time		$\mathrm{t}_{\mathrm{csU}}$	500	-	-		
Data set-up time	t_{SU}	300	-	-			
Data hold time	t_{DH}	300	-	-			
M delay time	t_{DM}	-1000	-	1000			
Clock rise/fall time	t_{ct}	-	-	100			

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Power supply rise time	$\mathrm{t}_{\mathrm{rcc}}$	0.1	-	10	ms	Figure 30
Power supply off time	$\mathrm{t}_{\text {OFF }}$	1	-	-		

Electrical Characteristics Notes

1. All voltage values are referred to $\mathrm{GND}=0 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V} 5$ must be maintained.
3. For die products, specified up to $75^{\circ} \mathrm{C}$.
4. For die products, specified by the die shipment specification.
5. The following four circuits are I/O pin configurations except for liquid crystal display output.

HD66702

6. Applies to input pins and I/O pins, excluding the OSC1 pin.
7. Applies to I/O pins.
8. Applies to output pins.
9. Current flowing through pull-up MOSs, excluding output drive MOSs.
10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive current flows through the input circuit to the power supply. To avoid this from happening, the input level must be fixed high or low.
11. Applies only to external clock operation.

$$
\text { Duty }=\frac{T h}{T h+T l} \times 100 \%
$$

12. Applies only to the internal oscillator operation using oscillation resistor R_{f}.

HD66702

13. $\mathrm{R}_{\text {Сом }}$ is the resistance between the power supply pins $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V} 1, \mathrm{~V} 4, \mathrm{~V} 5\right)$ and each common signal pin (COM1 to COM16).
$\mathrm{R}_{\mathrm{SEG}}$ is the resistance between the power supply pins $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V} 2, \mathrm{~V} 3, \mathrm{~V} 5\right)$ and each segment signal pin (SEG1 to SEG100).
14. The following graphs show the relationship between operation frequency and current consumption.

15. Applies to the OSC1 pin.
16. Each COM and SEG output voltage is within $\pm 0.15 \mathrm{~V}$ of the LCD voltage $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{~V} 5\right)$ when there is no load.
17. The TEST pin should be fixed to GND and the EXT pin should be fixed to V_{CC} or GND.

HD66702

Load Circuits

Data Bus DB0 to DB7

External Driver Control Signal: CL1, CL2, D, M

Timing Characteristics

Figure 27 Write Operation

Figure 28 Read Operation

HD66702

Figure 29 Interface Timing with External Driver

Notes: 1. t off compensates for the power oscillation period caused by momentary power supply oscillations.
2. Specified at 4.5 V for $5-\mathrm{V}$ operation, and at 2.7 V for 3-V operation.
3. When the above condition cannot be satisfied, the internal reset circuit will not operate normally
In this case, the LSI must be initialized by software. (Refer to the Initializing by Instruction section.)

Figure 30 Internal Power Supply Reset

