Features

- This Circuit is Processed in Accordance to MIL-STD883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Gain Bandwidth Product. 100MHz (Min)
- Unity Gain Bandwidth 30MHz (Min) 40MHz (Typ)
- High Slew Rate. .25V/ $\mu \mathrm{V}$ (Min) 37V/ $\mu \mathrm{s}$ (Typ)
- Low Offset Voltage $0.75 m V(M a x)$ 0.30 mV (Тур)
- High Open Loop Gain 106dB (Min) 128dB (Typ)
- Low Voltage Noise (at 1 kHz). $5.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (Max) $3.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (Typ)
- Low Current Noise (at 1 kHz). 2.0pA $/ \sqrt{\mathrm{Hz}}$ (Max) $1.4 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ (Тур)
- High Output Current $\pm 30 \mathrm{~mA}$ (Min) $\pm 56 \mathrm{~mA}$ (Тур)
- Low Supply Current. 10mA (Max) 8mA (Тур)

Applications

- Precision Test Systems
- Active Filtering
- Small Signal Video
- Accurate Signal Processing
- RF Signal Conditioning

Description

The HA-5221/883 is a high performance, dielectrically isolated, monolithic op amp, featuring precision DC characteristics while providing excellent AC characteristics. Designed for audio, video, and other demanding applications, noise $(3.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz typ), total harmonic distortion ($<0.005 \%$ typ), and DC errors are kept to a minimum.

The precision performance is shown by low offset voltage (0.3 mV typ), low bias currents (40nA typ), low offset currents (15nA typ), and high open loop gain (128dB typ). The combination of these excellent DC characteristics with fast settling time ($0.4 \mu \mathrm{~s}$ typ) make the HA-5221/883 ideally suited for precision signal conditioning.

The unique design of the HA-5221/883 gives this device outstanding AC characteristics, including high unity gain bandwidth (40 MHz typ) and high slew rate ($37 \mathrm{~V} / \mu \mathrm{s}$ typ), not normally associated with precision op amps. Other key specifications include high CMRR (95dB typ) and high PSRR (100dB typ). The combination of these specifications will allow the HA-5221/883 to be used in RF signal conditioning as well as video amplifiers.

Ordering Information

OBSOLETE PART NUMBER	SMD NO.	TEMP RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE
HA4-5221/883	$5962-9163401 \mathrm{M} 2 \mathrm{~A}$	-55 to 125	20 Ld CLCC
HA7-5221/883	$5962-9163401 \mathrm{MPA}$	-55 to 125	8 Ld CERDIP

Pinouts

Absolute Maximum Ratings	
Voltage Between V+ and V-Terminals	36 V
Differential Input Voltage	5 V
Voltage at Either Input Terminal.	V+ to V-
Peak Output Current (Pulsed at 1ms,	uty Cycle). 100 mA
Continuous Output Current.	Short Circuit Protected
Junction Temperature.	$+175^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating.	<2000V
Lead Temperature (Soldering 10s).	$+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
CerDIP Package	$110^{\circ} \mathrm{C} / \mathrm{W}$	$27^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic LCC Package	$64^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
Metal Can Package	$148{ }^{\circ} \mathrm{C} / \mathrm{W}$	$67^{\circ} \mathrm{C} / \mathrm{W}$
Package Power Dissipation Limit at $+75^{\circ} \mathrm{C}$		
CerDIP Package		0.91W
Ceramic LCC Package		1.56W
Metal Can Package		0.68W
Package Power Dissipation Derating Factor Above $+75^{\circ} \mathrm{C}$		
CerDIP Package		. $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Ceramic LCC Package		. $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Metal Can Package		. $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range. $\ldots \ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {INCM }} \leq 1 / 2(\mathrm{~V}+-\mathrm{V}-)$
Operating Supply Voltage...................... 10 V to $\pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-0.75	0.75	mV
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-1.5	1.5	mV
Input Bias Current	${ }_{+}{ }_{B}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & +\mathrm{R}_{\mathrm{S}}=100.1 \mathrm{k} \Omega, \\ & -\mathrm{R}_{\mathrm{S}}=100 \Omega \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-80	80	nA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-200	200	nA
	${ }^{-1}{ }_{B}$	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V},+\mathrm{R}_{\mathrm{S}}=100 \Omega, \\ -\mathrm{R}_{\mathrm{S}}=100.1 \mathrm{k} \Omega \end{array} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-80	80	nA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-200	200	nA
Input Offset Current	I_{10}	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & +\mathrm{R}_{\mathrm{S}}=100.1 \mathrm{k} \Omega, \\ & -\mathrm{R}_{\mathrm{S}}=100.1 \mathrm{k} \Omega \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-50	50	nA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-150	150	nA
Common Mode Range	+CMR	$\mathrm{V}+=+3 \mathrm{~V}, \mathrm{~V}-=-27 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	12	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	12	-	V
	-CMR	$\mathrm{V}+=+27 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	-12	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-12	V
Large Signal Voltage Gain	$+\mathrm{A}_{\mathrm{VOL}}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ and +10 V	4	$+25^{\circ} \mathrm{C}$	106	-	dB
			5, 6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	100	-	dB
	$-\mathrm{A}_{\text {VoL }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ and -10 V	4	$+25^{\circ} \mathrm{C}$	106	-	dB
			5,6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	100	-	dB
Common Mode Rejection Ratio	+CMRR	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}=+10 \mathrm{~V}, \\ & \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-25 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=-10 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	88	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	86	-	dB
	-CMRR	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{+}=+25 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=+10 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	88	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	86	-	dB
Output Voltage Swing	$+\mathrm{V}_{\text {OUT }}$	$R_{L}=1 \mathrm{k} \Omega$	4	$+25^{\circ} \mathrm{C}$	12.0	-	V
			5,6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	11.5	-	V
	- $\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	4	$+25^{\circ} \mathrm{C}$	-	-12.0	V
			5, 6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-11.5	V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)
Device Tested at: $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Output Current	${ }^{+} \mathrm{OUT}$	$\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	4	$+25^{\circ} \mathrm{C}$	30	-	mA
			5, 6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	30	-	mA
	- lout	$V_{\text {OUT }}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	4	$+25^{\circ} \mathrm{C}$	-	-30	mA
			5, 6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-30	mA
Quiescent Power Supply Current	$+{ }_{\text {CC }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	1	$+25^{\circ} \mathrm{C}$	-	10	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	11	mA
	${ }^{-1} \mathrm{Cc}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	1	$+25^{\circ} \mathrm{C}$	-10	-	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-11	-	mA
Power Supply Rejection Ratio	+PSRR	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUP }}=10 \mathrm{~V}, \\ & \mathrm{~V}+=+20 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}+=+10 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	90	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	86	-	dB
	-PSRR	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUP }}=10 \mathrm{~V}, \\ & \mathrm{~V}+=+15 \mathrm{~V}, \mathrm{~V}-=-20 \mathrm{~V}, \\ & \mathrm{~V}+=+15 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	90	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	86	-	dB
Offset Voltage Adjustment	$+\mathrm{V}_{10} \mathrm{Adj}$	Note 1	1	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{10}-1$	-	mV
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\mathrm{V}_{10}-1$	-	mV
	$-\mathrm{V}_{10} \mathrm{Adj}$	Note 1	1	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{10}+1$	-	mV
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\mathrm{V}_{10}+1$	-	mV

NOTE:

1. Offset adjustment range is [V_{IO} (Measured $\pm 1 \mathrm{mV}$] minimum referred to output. This test is for functionality only to assure adjustment through 0 V .

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC specifications in Table 3.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Characterized at: $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{\text {LOAD }}=1 \mathrm{k} \Omega, C_{\text {LOAD }}=50 \mathrm{pF}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Input Noise Voltage Density	E_{N}	$\mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	1, 5	$+25^{\circ} \mathrm{C}$	-	24.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$	1, 5	$+25^{\circ} \mathrm{C}$	-	8.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$	1,5	$+25^{\circ} \mathrm{C}$	-	5.8	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	${ }^{\prime}$	$\mathrm{R}_{\mathrm{S}}=500 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	1,5	$+25^{\circ} \mathrm{C}$	-	11.5	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{R}_{\mathrm{S}}=500 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$	1,5	$+25^{\circ} \mathrm{C}$	-	6.0	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{R}_{\mathrm{S}}=500 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$	1,5	$+25^{\circ} \mathrm{C}$	-	2.0	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Gain Bandwidth Product	GBWP	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{kHz} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	100	-	MHz
				$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	90	-	MHz
Unity Gain Bandwidth	UGBW	$\mathrm{V}_{\text {OUT }}=200 \mathrm{mV}$	1	$+25^{\circ} \mathrm{C}$	30	-	MHz
				$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	25	-	MHz
Slew Rate	\pm SR	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \pm 2.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	1	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	25	-	V/us

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)
Device Characterized at: $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega, \mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Full Power Bandwidth	FPBW	$\mathrm{V}_{\text {PEAK }}=10 \mathrm{~V}$	1, 2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	398	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	1	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1	-	V/V
Rise and Fall Time	$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	$\mathrm{V}_{\text {OUT }}= \pm 100 \mathrm{mV}$	1, 4	$+25^{\circ} \mathrm{C}$	-	20	ns
Overshoot	\pm OS	$\mathrm{V}_{\text {OUT }}= \pm 100 \mathrm{mV}$	1	$+25^{\circ} \mathrm{C}$	-	25	\%
				$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	30	\%
Power Consumption	PC	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}= \\ & \text { OmA } \end{aligned}$	1,3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	660	mW

NOTES:

1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/($2 \pi \mathrm{~V}_{\text {PEAK }}$).
3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).
4. Measured between 10% and 90% points.
5. Input Noise Voltage Density and Input Noise Current Density limits are based on characterization data.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	$1,2,3,4,5,6$
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:
$72 \times 94 \times 19$ mils ± 1 mils
$1840 \times 2400 \times 483 \mu \mathrm{~m} \pm 25.4 \mu \mathrm{~m}$
METALLIZATION:
Type: AI, 1\% Cu
Thickness: $16 k \AA . \pm 2 k \AA$
GLASSIVATION:
Type: Nitride (Si3N4) over Silox (SIO2, 5\% Phos.) Silox Thickness: $12 \mathrm{k} A \pm 2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$4.2 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$
SUBSTRATE POTENTIAL (Powered Up): V-
TRANSISTOR COUNT: 62
PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Corporation and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$
SUPPLY CURRENT vs TEMPERATURE

TYPICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Unless Otherwise Specified

PARAMETERS	CONDITIONS	TEMPERATURE	TYPICAL	UNITS
Input Offset Voltage	See Table 1	$+25^{\circ} \mathrm{C}$	0.3	mV
		Full	0.35	mV
Average Offset Voltage Drift	See Table 1	Full	0.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	See Table 1	$+25^{\circ} \mathrm{C}$	40	nA
		Full	70	nA
Input Offset Current	See Table 1	$+25^{\circ} \mathrm{C}$	15	nA
		Full	30	nA
Differential Input Resistance	See Table 1	$+25^{\circ} \mathrm{C}$	70	k Ω
Input Noise Voltage	$\mathrm{f}_{\mathrm{O}}=0.1 \mathrm{~Hz}$ to 10 Hz	$+25^{\circ} \mathrm{C}$	0.25	$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Input Noise Voltage Density	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	10	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	3.6	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	7	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	3	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	1.4	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD \& N	See Note 1	$+25^{\circ} \mathrm{C}$	0.005	\%
Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	128	dB
		Full	120	dB

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Corporation and is for use as application and design information only. No guarantee is implied.

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Device Characterized at: Supply Voltage $= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$, Unless Otherwise Specified

PARAMETERS	CONDITIONS		TEMPERATURE	TYPICAL	UNITS
Common Mode Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$		Full	95	dB
Unity Gain Bandwidth	(-3dB)		$+25^{\circ} \mathrm{C}$	40	MHz
			$+125^{\circ} \mathrm{C}$	33	MHz
			$-55^{\circ} \mathrm{C}$	45	MHz
Gain Bandwidth Product	1 kHz to 400 kHz		$+25^{\circ} \mathrm{C}$	130	MHz
			$+125^{\circ} \mathrm{C}$	110	MHz
			${ }^{-55}{ }^{\circ} \mathrm{C}$	150	MHz
Minimum Gain Stability			Full	1	V/V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=333 \Omega$		Full	± 10	V
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$		$+25^{\circ} \mathrm{C}$	± 12.5	V
			Full	± 12.1	V
Output Current	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		Full	± 56	mA
Output Resistance			$+25^{\circ} \mathrm{C}$	10	W
Full Power Bandwidth	$\begin{aligned} & \mathrm{FPBW}=\mathrm{SR} / 2 \pi \mathrm{~V}_{\mathrm{PE}} \\ & \mathrm{~V}_{\text {PEAK }}=10 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$	398	kHz
Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	37	V/us
			$+125^{\circ} \mathrm{C}$	37	V/ $/ \mathrm{s}$
			$-55^{\circ} \mathrm{C}$	34	V/us
Rise Time	$\mathrm{V}_{\text {OUT }}= \pm 100 \mathrm{mV}$		$+25^{\circ} \mathrm{C}$	13	ns
			$+125^{\circ} \mathrm{C}$	13	ns
			$-55^{\circ} \mathrm{C}$	15	ns
Overshoot	$\mathrm{V}_{\text {OUT }}= \pm 100 \mathrm{mV}$		$+25^{\circ} \mathrm{C}$	13	\%
			$+125^{\circ} \mathrm{C}$	13	\%
			$-55^{\circ} \mathrm{C}$	11	\%
Settling Time	$10 V_{\text {STEP }}, \mathrm{AV}=-1$	0.1\%	$+25^{\circ} \mathrm{C}$	0.4	$\mu \mathrm{s}$
		0.01\%	$+25^{\circ} \mathrm{C}$	1.5	$\mu \mathrm{s}$
Power Supply Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$		Full	100	dB
Supply Current			Full	8	mA
Minimum Supply Voltage	Functional Operat Other Parameters	nly. Vary.	$+25^{\circ} \mathrm{C}$	± 5	V

NOTE:

1. $A_{V C L}=10, f_{\mathrm{O}}=1 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=5 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=600 \Omega, 10 \mathrm{~Hz}$ to 100 Hz , Minimum resolution of test equipment is 0.005%.

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Corporation and is for use as application and design information only. No guarantee is implied.

PARAMETERS	CONDI- TIONS	TEMPERATURE	TYPICAL	UNITS
Input Noise Current Density	$\mathrm{fO}=10 \mathrm{~Hz}$	+250 C	7	$\mathrm{pA} / \mathrm{qHz}$
	$\mathrm{fO}=100 \mathrm{~Hz}$	+250 C	3	$\mathrm{pA} / \mathrm{qHz}$
	$\mathrm{fO}=1 \mathrm{kHz}$	+250 C	1.4	$\mathrm{pA} / \mathrm{qHz}$
THD \& N	See Note 1	+250 C	0.005	$\%$
Large Signal Voltage Gain	VOUT $=0$ to 110 V	+250 C	128	dB
	Fell 110 V	Full	120	dB
Common Mode Rejection Ratio	Dela VCM	dB		
Unity Gain Bandwidth	(-3)			

Ceramic Leadless Chip Carrier Packages (CLCC)

J20.A MIL-STD-1835 CQCC1-N20 (C-2) 20 PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.060	0.100	1.52	2.54	6, 7
A1	0.050	0.088	1.27	2.23	-
B	-	-	-	-	-
B1	0.022	0.028	0.56	0.71	2, 4
B2	0.072 REF		1.83 REF		-
B3	0.006	0.022	0.15	0.56	-
D	0.342	0.358	8.69	9.09	-
D1	0.200 BSC		5.08 BSC		-
D2	0.100 BSC		2.54 BSC		-
D3	-	0.358	-	9.09	2
E	0.342	0.358	8.69	9.09	-
E1	0.200 BSC		5.08 BSC		-
E2	0.100 BSC		2.54 BSC		-
E3	-	0.358	-	9.09	2
e	0.050 BSC		1.27 BSC		-
e1	0.015	-	0.38	-	2
h	0.040 REF		1.02 REF		5
j	0.020 REF		0.51 REF		5
L	0.045	0.055	1.14	1.40	-
L1	0.045	0.055	1.14	1.40	-
L2	0.075	0.095	1.91	2.41	-
L3	0.003	0.015	0.08	0.38	-
ND	5		5		3
NE	5		5		3
N	20		20		3

NOTES:

1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch $(0.38 \mathrm{~mm})$ shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol "N" is the maximum number of terminals. Symbols "ND" and "NE" are the number of terminals along the sides of length "D" and "E", respectively.
4. The required plane 1 terminals and optional plane 2 terminals (if used) shall be electrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Dimension "A" controls the overall package thickness. The maximum "A" dimension is package height before being solder dipped.
8. Dimensioning and tolerancing per ANSI Y14.5M-1982.
9. Controlling dimension: INCH .

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	5
E	0.220	0.310	5.59	7.87	5
e		SC		BSC	-
eA	0.30	SC		BSC	-
eA/2	0.15	SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	8		8		8

Rev. 0 4/94

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240

EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

