## DS3695A/DS3695AT/DS3696A Multipoint RS485/RS422 Transceivers

## General Description

The DS3695A and DS3696A are high speed differential TRI-STATE ${ }^{\circledR}$ bus/line transceivers designed to meet the requirements of EIA standard RS485 with extended common mode range ( +12 V to -7 V ), for multipoint data transmission. In addition they are compatible with requirements of RS-422.
The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12 V to -7 V . Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696A provides an output pin (TS) which reports the thermal shutdown of the device. TS is an "open collector" pin with an internal $10 \mathrm{k} \Omega$ pull-up resistor. This allows the TS outputs of several devices to be wire OR-ed.
Both $A C$ and DC specifications are guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature and 4.75 V to 5.25 V supply voltage range.

## Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422
- 10 ns driver propagation delays (typical)
- Single +5 V supply
- -7 V to +12 V bus common mode range permits $\pm 7 \mathrm{~V}$ ground difference between devices on the bus
- Thermal shutdown protection
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus
- 70 mV typical receiver hysteresis
- Available in SOIC packaging


## Connection and Logic Diagram

## Molded Package, Small Outline (M)



TLF/5272-1
Top View


Note: TS was $\overline{L F}$ (Line Fault) on previous datasheets, TS goes low upon thermal shutdown.
Order Number DS3695AM, DS3695ATM or DS3696AM
See NS Package Number M08A

| Absolute Maximum Ratings (Note 1) | Recommended Operating |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. | Conditions | Min | Max | Units |
|  | Supply Voltage, $\mathrm{V}_{\text {CC }}$ Bus Voltage | 4.75 -7 | 5.25 +12 | V |
| Control Input Voltages 7V | Operating Free Air Ter |  |  |  |
| Driver Input Voltage 7V | Commercial (DS3695AM) | 0 | + 70 | ${ }^{\circ} \mathrm{C}$ |
| Driver Output Voltages $+15 \mathrm{~V} /-10 \mathrm{~V}$ | Industrial (DS3695ATM) | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| Receiver Input Voltages $+15 \mathrm{~V} /-10 \mathrm{~V}$ | Commercial (DS3696AM) | 0 | + 70 | ${ }^{\circ} \mathrm{C}$ |
| Receiver Output Voltage 5.5V |  |  |  |  |
| Continuous Power Dissipation @ $25^{\circ} \mathrm{C} \quad 630 \mathrm{~mW}$ (Note 4) M Package |  |  |  |  |
| Storage Temp. Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |  |  |  |
| Lead Temp. (Soldering 4 seconds) $260^{\circ} \mathrm{C}$ |  |  |  |  |

Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{C C}<5.25 \mathrm{~V}$ unless otherwise specified (Notes 2 \& 3)

| Symbol | Parameter |  | Conditions |  | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OD1 }}$ | Differential Driver Output Voltage (Unloaded) |  | $\mathrm{I}_{0}=0$ |  |  |  | 5 | V |
| $\mathrm{V}_{\mathrm{OD} 2}$ | Differential Driver Output Voltage (with Load) |  |  | R = 50 ${ }^{\text {; (RS-422) ( }}$ ( ote 5) | 2 |  |  | V |
|  |  |  |  | $\mathrm{R}=27 \Omega$; (RS-485) | 1.5 |  |  | V |
| $\Delta \mathrm{V}_{\mathrm{OD}}$ | Change in Magnitude of Driver Differential Output Voltage For Complementary Output States |  |  | $R=27 \Omega$ |  |  | 0.2 | V |
| $V_{O C}$ | Driver Common Mode Output Voltage |  |  |  |  |  | 3.0 | V |
| $\Delta\left\|\mathrm{V}_{\text {OC }}\right\|$ | Change in Magnitude of Driver Common Mode Output Voltage For Complementary Output States |  |  |  |  |  | 0.2 | V |
| $\mathrm{V}_{\text {IH }}$ | Input High Voltage | DI, DE, $\overline{R E}, R \bar{E} / D E$ |  |  | 2 |  |  | V |
| $V_{\text {IL }}$ | Input Low Voltage |  |  |  |  |  | 0.8 | V |
| $V_{C L}$ | Input Clamp Voltage |  |  | $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |  |  | -1.5 | V |
| IIL | Input Low Current |  |  | $\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$ |  |  | -200 | $\mu \mathrm{A}$ |
| ${ }_{1 / \mathrm{H}}$ | Input High Current |  |  | $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ |  |  | 20 | $\mu \mathrm{A}$ |
| In | Input Current | DO/RI, $\overline{\mathrm{DO}} / \overline{\mathrm{RI}}$ RI, $\overline{\mathrm{R}} \mathbf{I}$ | $\begin{aligned} & V_{C C}=O V \text { or } 5.25 V \\ & D E \text { or } R \bar{E} / D E=O V \end{aligned}$ | $V_{\text {IN }}=12 \mathrm{~V}$ |  |  | + 1.0 | mA |
|  |  |  |  | $\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$ |  |  | -0.8 | mA |
| $V_{\text {TH }}$ | Differential Input Threshold Voltage for Receiver |  | $-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$ |  | -0.2 |  | + 0.2 | V |
| $\Delta \mathrm{V}_{\text {TH }}$ | Receiver Input Hysteresis |  | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ |  |  | 70 |  | mV |
| $\mathrm{V}_{\mathrm{OH}}$ | Receiver Output High Voltage |  | $\mathrm{IOH}=-400 \mu \mathrm{~A}$ |  | 2.4 |  |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output Low Voltage | RO | $\mathrm{IOL}^{\mathrm{OL}}=16 \mathrm{~mA}$ (Note 5) |  |  |  | 0.5 | V |
|  |  | $\overline{\text { TS }}$ | $\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  |  |  | 0.45 | V |
| IozR | OFF-State (High Impedance) Output Current at Receiver |  | $\begin{aligned} & V_{C C}=M a x \\ & 0.4 \mathrm{~V} \leq V_{\mathrm{O}} \leq 2.4 \mathrm{~V} \end{aligned}$ |  |  |  | $\pm 20$ | $\mu \mathrm{A}$ |
| $\mathrm{R}_{\text {IN }}$ | Receiver Input Resistance |  | $-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$ |  | 12 |  |  | $\mathrm{k} \Omega$ |
| ICC | Supply Current |  | No Load (Note 5) | Driver Outputs Enabled |  | 42 | 60 | mA |
|  |  |  |  | Driver Outputs Disabled |  | 27 | 40 | mA |

## Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified (Notes $2 \& 3$ ) (Continued)

| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| IOSD | Driver Short-Circuit <br> Output Current | $V_{O}=-7 \mathrm{~V}($ Note 5) |  |  | -250 | mA |
|  | $V_{O}=+12 \mathrm{~V}($ Note 5) |  |  | +250 | mA |  |
| IOSR | Receiver Short-Circuit <br> Output Current | $V_{O}=0 \mathrm{~V}$ | -15 |  | -85 | mA |

Note 1: "Absolute maximum ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to 337 mW at $70^{\circ} \mathrm{C}$.
Note 5: All limits for which Note 5 is applied must be derated by $10 \%$ for DS3695AT. Other parameters remain the same for this extended temperature range device $\left(-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}\right.$ ).

## Switching Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified (Note 3)
Receiver Switching Characteristics (Figures 1, 2 and 3)

| Symbol | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {tPLH }}$ | $C_{L}=15 p F$ <br> S1 and S2 <br> Closed | 15 | 28 | 42 | ns |
| $\mathrm{t}_{\text {PHL }}$ |  | 15 | 28 | 42 | ns |
| $\mid \mathrm{t}_{\text {PLH }}$ - tPHL |  | 0 | 3 |  | ns |
| tpLZ | $C_{L}=15 \mathrm{pF}$, S2 Open | 5 | 29 | 35 | ns |
| $\mathrm{t}_{\text {PHZ }}$ | $C_{L}=15 \mathrm{pF}, \mathrm{S} 1$ Open | 5 | 12 | 16 | ns |
| tPZL | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, S2 Open | 7 | 15 | 28 | ns |
| tpZH | $C_{L}=15 \mathrm{pF}, \mathrm{S} 1$ Open | 7 | 15 | 20 | ns |

Driver Switching Characteristics

| Symbol | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SINGLE ENDED CHARACTERISTICS (Figures 4, 5 and 6) |  |  |  |  |  |
| tplH | $\begin{aligned} & R_{\text {LDIFF }}=60 \Omega \\ & C_{L 1}=C_{L 2}=100 \mathrm{pF} \end{aligned}$ | 9 | 15 | 22 | ns |
| tPHL |  | 9 | 15 | 22 | ns |
|  |  | 0 | 2 | 8 | ns |
| tPLZ | $C_{L}=15 \mathrm{pF}$, S2 Open | 7 | 15 | 30 | ns |
| tPHZ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{S} 1$ Open | 7 | 15 | 30 | ns |
| tpZL | $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, S2 Open | 30 | 35 | 50 | ns |
| tpZH | $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{S} 1$ Open | 30 | 35 | 50 | ns |
| DIFFERENTIAL SWITCHING CHARACTERISTICS (Figure 7) |  |  |  |  |  |
| $t_{t}, t_{t}$ | $\begin{aligned} & R_{\mathrm{LDIFF}}=60 \Omega \\ & \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \end{aligned}$ | 6 | 10 | 18 | ns |

## AC Test Circuits and Switching Waveforms



TL/F/5272-6
FIGURE 1. Receiver Propagation Delay Test Circuit


TL/F/5272-7
Note: Differential input voltage may be realized by grounding $\overline{\mathrm{RI}}$ and pulsing RI between +2.5 V and -2.5 V
FIGURE 2. Receiver Input-to-Output Propagation Delay Timing


TL/F/5272-8
FIGURE 3. Receiver Enable/Disable Propagation Delay Timing

## AC Test Circuits and Switching Waveforms (Continued)



FIGURE 4. Driver Propagation Delay Test Circuits


TL/F/5272-11
Note: $t_{\text {PLH }}$ and $t_{\text {PHL }}$ are measured to the respective $50 \%$ points. $t_{\text {SKEw }}$ is the difference between propagation delays of the complementary outputs.
FIGURE 5. Driver Input-to-Output Propagation Delay Timing (Single-Ended)


FIGURE 6. Driver Enable/Disable Propagation Delay Timing


FIGURE 7. Driver Differential Transition Timing

Function Tables

| Inputs |  |  | Output |  |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathbf{R E}}$ | $\mathbf{D E}$ | $\mathbf{R I}-\overline{\mathbf{R I}}$ | RO | $\overline{\text { TS}}{ }^{*}$ (DS3696A Only) |
| 0 | 0 | $2+0.2 \mathrm{~V}$ | $\mathbf{1}$ | H |
| 0 | 0 | $\leq-0.2 \mathrm{~V}$ | 0 | H |
| 0 | 0 | Inputs Open** | 1 | H |
| 1 | 0 | X | Z | H |

X - Don't care condition
Z - High impedance state
Fault - Improper line conditions causing excessive pawer dissipation in the driver, such as shorts or bus contention situations

- $\overline{\mathrm{TS}}$ is an "open collector" output with an on-chip $10 \mathrm{k} \Omega$ pull-up resistor.
* This is a fall safe condition

Typical Application


Note: Repeater control logic not shown. See AN-702.

