DS3667 TRI-STATE ${ }^{\circledR}$ Bidirectional Transceiver

General Description

The DS3667 is a high-speed Schottky 8-channel bidirectional transceiver designed for digital information and communication systems. Pin selectable totem-pole/open collector outputs are provided at all driver outputs. This feature, together with the Dumb Mode which puts both driver and receiver outputs in TRI-STATE at the same time, means higher flexibility of system design. PNP inputs are used at all driver inputs for minimum loading, and hysteresis is provided at all receiver inputs for added noise margin. A power up/down protection circuit is included at all outputs to provide glitch-free operation during V_{CC} power up or down.

Features

- 8-channel bidirectional non-inverting transceivers
- Bidirectional control implemented with TRI-STATE output design
- High speed Schottky design
- Low power consumption
- High impedance PNP inputs (drivers)
- Pin selectable totem-pole/open collector outputs (drivers)
- 500 mV (typ) input hysteresis (receivers)
- Power up/down protection (glitch-free)

Dumb Mode capability

Connection Diagram

Functional Truth Table

Control Input Level		Data Transcelvers			
TE	PE	Mode	Bus Port	Terminal Port	
H	H	T	Totem-Pole Output	Input	
H	L	T	Open Collector Output	Input	
L	H	R	Input	Output	
L	L	D	TRI-STATE	TRI-STATE	

H: High Level Input
L. Low Level Input

T : Transmitting Mode
R: Receiving Mode
D: Dumb Mode
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Supply Voltage (VCC)	7.0 V
Input Voltage	5.5 V

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Molded Package
1832 mW
Lead Temperature (Soldering, 4 seconds) $260^{\circ} \mathrm{C}$
-Derate molded package $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Operating Conditions

	Min	Max	Units
V_{CC}, Supply Voltage	4.75	5.25	V
$\mathrm{~T}_{\mathrm{A}}$, Ambient Temperature	0	70	${ }^{\circ} \mathrm{C}$
IOL, Output Low Current			
\quad Bus		48	mA
Terminal		16	mA

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter		Conditions	Min	Typ	Max	Units
V_{IH}	High Level Input Voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					0.8	V
$V_{\text {IK }}$	Input Clamp Voltage		$l_{1}=-18 \mathrm{~mA}$		-0.8	-1.5	V
$\mathrm{V}_{\mathrm{HYS}}$	Input Hysteresis	Bus		400	500		mV
V_{OH}	High Level Output Voltage	Terminal	$\mathrm{IOH}=-800 \mu \mathrm{~A}$	2.7	3.5		V
		Bus	$\mathrm{IOH}=-5.2 \mathrm{~mA}$	2.5	3.4		
V OL	Low Level Output Voltage	Terminal	$\mathrm{l} \mathrm{OL}=16 \mathrm{~mA}$		0.3	0.5	V
		Bus	$\mathrm{l} \mathrm{LL}=48 \mathrm{~mA}$		0.4	0.5	
IIH	High Level Input Current	TE, PE	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		0.2	100	$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2.7 \mathrm{~V}$		0.1	20	
		Terminal and Bus	$\mathrm{V}_{1}=4 \mathrm{~V}$			200	
IIL	Low Level Input Current	Terminal and TE, PE	$\mathrm{V}_{1}=0.5 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
		Bus			-0.4	-1.0	mA
los	Short Circuit Output Current	Terminal	$\mathrm{V}_{1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}($ Note 4)	-15	-35	-75	mA
		Bus		-50	-120	-200	
Icc	Supply Current		Transmit, $\mathrm{TE}=2 \mathrm{~V}, \mathrm{PE}=2 \mathrm{~V}, \mathrm{~V}_{1}=0.8 \mathrm{~V}$		75	100	mA
			Receive, $\mathrm{TE}=0.8 \mathrm{~V}, \mathrm{PE}=2 \mathrm{~V}, \mathrm{~V}_{1}=0.8 \mathrm{~V}$		65	90	
$\mathrm{C}_{\text {IN }}$	Bus-Port Capacitance	Bus	$\begin{aligned} & V_{C C}=0 V, V_{1}=0 V \\ & f=10 \mathrm{kHz} \text { (Note 5) } \end{aligned}$	-	20	30	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operations.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 4.75 V to 5.25 V power supply range. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: This parameter is guaranteed by design. It is not a tested parameter.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Note 1)

Symbol	". Parameter	From	To	Conditions	Min	Typ.	Max	Units
${ }_{\text {tPLH }}$	Propagation Delay Time, Low to High Level Output	Terminal	Bus	$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=2.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=38.3 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ (Figure 1)		10	20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High to Low Level Output					14	20	ns
${ }_{\text {tpLH }}$	Propagation Delay Time, Low to High Level Output	Bus	Terminal	$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=5.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=240 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \text { (Figure 2) } \end{aligned}$		15	20	ns
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time, High to Low Level Output					10	20	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level	TE (Notes 2 and 3)	Bus	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=480 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		19	30	ns
${ }_{\text {t }}^{\text {PHZ }}$	Output Disable Time to High Level					15	20	ns
${ }_{\text {t }}^{\text {PZL }}$	Output Enable Time to Low Level			$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=2.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=38.3 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { (Figure 1) } \\ & \hline \end{aligned}$		24	40	ns
${ }_{\text {t }}^{\text {PLZ }}$	Output Disable Time to Low Level					17	30	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level	TE, PE (Notes 2 and 3)	Terminal	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { (Figure 1) } \end{aligned}$		19	35	ns
${ }_{\text {tPHZ }}$	Output Disable Time to High Level					17	25	ns
${ }_{\text {t }}^{\text {PZL }}$	Output Enable Time to Low Level			$\begin{aligned} & V_{1}=0 \mathrm{~V} \\ & V_{\mathrm{L}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		27	40	ns
${ }_{\text {tPL }}$	Output Disable Time to Low Level					17	30	ns
${ }_{\text {tPZH }}$	Output Pull-Up Enable Time	PE (Notes 2 and 3)	Bus	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=480 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		10	20	ns
${ }_{\text {tPHZ }}$	Output Pull-Up Disable Time					10	20	ns

Note 1: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$.
Note 2: Refer to Functional Truth Table for control input definition.
Note 3: Test configuration should be connected to only one transceiver at a time due to the high current stress caused by the V_{l} voltage source when the output connected to that input becomes active.

Switching Load Configurations

TL/F/5245-3
V_{C} logic high $=3.0 \mathrm{~V}$
V_{C} logic low $=0 \mathrm{~V}$
${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes jig and probe capacitance
FIGURE 1

* C_{L} includes jig and probe capacitance

FIGURE 2

Switching Waveforms

TL/F/5245-6

TL/F/5245-7

