National Semiconductor

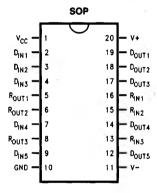
ADVANCE INFORMATION

DS14196 EIA/TIA-232 5 Driver x 3 Receiver

General Description

The DS14196 is a five driver, three receiver device which conforms to the EIA/TIA-232-E standard.

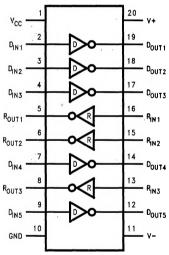
The flow-through pinout facilitates simple non-crossover board layout. The DS14196 provides a peripheral side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.


The DS14196 offers optimum performance when used with the DS14185 3 x 5 Driver/Receiver, a host side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.

Features

- Replaces two 1488s and one 1489
- Conforms to EIA/TIA-232-E
- 5 drivers and 3 receivers
- Flow-through pinout
- Failsafe receiver outputs
- 20-pin wide SOIC package
- LapLink® compatible—300 kbps data rate
- Pin compatible with: SN75196

GD7532


Connection Diagram

TL/F/12613-1

Order Number DS14196WM See NS Package Number M20B

Functional Diagram

TL/F/12613-2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Cinco, Dictional for Evaluation, and opening	
Supply Voltage (V _{CC})	+ 7V
Supply Voltage (V+)	+ 15V
Supply Voltage (V-)	-15V
Driver Input Voltage	0V to V _{CC}
Driver Output Voltage (Power Off)	±15V
Receiver Input Voltage	± 25V
Receiver Output Voltage (R _{OUT})	0V to V _{CC}
Maximum Power Package Dissipation @ +25°C	
M Package	TBD

Derate M Package

Storage Temperature Range

TBD

TBD

TBD

TBD

TBD

TBD

Lead Temperature Range (Soldering, 4 sec.) + 260°C ESD Ratings (HBM. 1.5 kΩ, 100 pF) ≥ 1.5 kV

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	+ 4.75	+5.0	+ 5.25	V
Supply Voltage (V+)	+9.0	+ 12.0	+ 13.2	V
Supply Voltage (V -)	-13.2	-12.0	-9.0	V
Operating Free Air				
Temperature (T _A)	0	+ 25	+ 70	°C

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified (Note 2)

Symbol	Parameter	Conditions			Тур	Max	Units
DEVICE C	HARACTERISTICS						
lcc	V _{CC} Supply Current	No Load, All Inputs at +	· 5V			TBD	mA
1+	V+ Supply Current	No Load, All Driver	V+ = +9V, V- = -9V			TBD	mA
	(Note 2)	Inputs at 0.8V or +2V. All Receiver Inputs	$V^{+} = +13.2V, V^{-} = -13.2V$			TBD	mA
1-	V- Supply Current	at 0.8V or 2.4V.	$V^{+} = +9V, V^{-} = -9V$			TBD	mA
	(Note 2)		$V^{+} = +13.2V, V^{-} = -13.2V$			TBD	mA
DRIVER C	HARACTERISTICS						
V _{IH}	High Level Input Voltage			2.0			V
V _{IL}	Low Level Input Voltage					0.8	٧
l _{IH}	High Level Input Current (Note 2)	V _{IN} = 5V	/ _{IN} = 5V			10	μΑ
IIL	Low Level Input Current (Note 2)	$V_{IN} = 0V$	V _{IN} = 0V			TBD	mA
VOH	High Level Output Voltage	$R_L = 3 k\Omega, V_{IN} = 0.8V$, V+ = +9V, V- = -9V	6	7		v
	(Note 2)	$R_L = 3 k\Omega, V_{IN} = 0.8V, V^+ = +12V, V^- = -12V$		8.5	10		v
		$R_L = 7 k\Omega, V_{IN} = 0.8V$, V ⁺ = +13.2V, V ⁻ = -13.2V	10	11.5		v
VOL	Low Level Output Voltage	$R_L = 3 k\Omega, V_{IN} = 2V, V$	/+ = +9V, V- = -9V		-7	-6	V
	(Note 2)	$R_L = 3 k\Omega, V_{IN} = 2V, V$	/+ = +12V, V ⁻ = -12V		-8	-7.5	٧
		$R_L = 7 k\Omega, V_{IN} = 2V, V$	/+ = +13.2V, V ⁻ = -13.2V		-11	-10	V
los+	Output High Short Circuit Current (Note 2)	$V_{OUT} = 0V, V_{IN} = 0.8V$	/	-6	-9	-14	mA
l _{OS} -	Output Low Short Circuit Current (Note 2)	$V_{OUT} = 0V, V_{IN} = 2.0V$		6	9	14	mA
Ro	Output Resistance	$-2V \le V_{OUT} \le +2V, V^{+} = V^{-} = V_{CC} = 0V$		300			Ω
	$-2V \le V_{OUT} \le +2V, V^{+} = V^{-} = V_{CC} = Open Circu$		/+ = V ⁻ = V _{CC} = Open Circuit	300			Ω

Electrical Characteristics

Over recommended operating supply voltage and temperature ranges, unless otherwise specified (Note 3) (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RECEIVER	CHARACTERISTICS	0			1	
V _{TH}	Input High Threshold (Recognized as a High Signal)	$V_{OUT} \le 0.4V$, $I_O = 3.2 \text{mA}$		2.0	2.4	V
V _{TL}	Input Low Threshold (Recognized as a Low Signal)	$V_{OUT} \ge 2.5V$, $I_O = -0.5$ mA	0.8	1.0		V
R _{IN}	Input Resistance	V _{IN} = ±3V to ±15V	3.0	4.1	7.0	kΩ
I _{IN}	Input Current (Note 2)	V _{IN} = +15V	2.1	4.1	5.0	mA
		V _{IN} = +3V	0.43	0.7	1.0	mA
		$V_{IN} = -15V$	-2.1	-4.1	-5.0	mA
		$V_{IN} = -3V$	-0.43	-0.65	-1.0	mA
VoH	High Level Output Voltage (Note 7)	$I_{OH} = -0.5 \text{ mA}, V_{1N} = -3V$	2.6	4.0		٧
		$I_{OH} = -10 \mu\text{A}, V_{IN} = -3V$	4.0	4.9		٧
	(I)	I _{OH} = -0.5 mA, V _{IN} = Open Circuit	2.6	4.0		V
		$I_{OH} = -10 \mu A$, $V_{IN} = Open Circuit$	4.0	4.9	-	٧
V _{OL}	Low Level Output Voltage	$I_{OL} = 3.2 \text{ mA}, V_{IN} = +3V$		0.2	0.4	٧
Iosa	Short Circuit Current (Note 2)	V _{OUT} = 0V, V _{IN} = 0V (Note 4)	-1.7	-2.7	-4	mA

Switching Characteristics

Over recommended operating supply and temperature ranges, unless otherwise specified (Note 3)

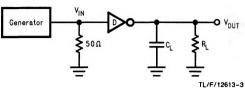
Symbol Parameter		Conditions		Тур	Max	Units
DRIVER CH	IARACTERISTICS	=	8		30/	
t _{PHL}	Propagation Delay High to Low	$R_L = 3 k\Omega$, $C_L = 50 pF$ (Figures 1 and 2)	*	90	350	ns
t _{PLH}	Propagation Delay Low to High			220	350	ns
t _r , t _f	Output Slew Rate (Note 8)			50		ns
RECEIVER	CHARACTERISTICS				nja,	
t _{PHL}	Propagation Delay High to Low	$R_L = 1.5 \mathrm{k}\Omega$, $C_L = 15 \mathrm{pF}$		60	100	ns
t _{PLH}	Propagation Delay Low to High	(includes fixture plus probe),		100	160	ns
t _r	Rise Time	(Figures 3 and 4)		87	175	ns
t _f	Fall Time		Y	15	50	ns

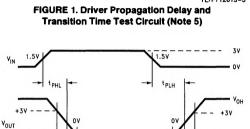
Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of the device pins is defined as negative. All voltages are referenced to ground unless otherwise specified. For current, minimum and maximum values are specified as an absolute value and the sign is used to indicate direction. For voltage logic levels, the more positive value is designated as maximum. For example, if -6V is a maximum, the typical value -6.8V is more negative.

Note 3: All typicals are given for: $V_{CC} = +5V$, $V^{+} = +12V$, $V^{-} = -12V$, $T_{A} = +25^{\circ}C$.

Note 4: Only one driver output shorted at a time.


Note 5: Generator characteristics for driver input: f = 64 kHz (128 kbps), $t_r = t_f < 10$ ns, $V_{IH} = 3V$, $V_{IL} = 0V$, duty cycle = 50%.


Note 6: Generator characteristics for receiver input: f = 64 kHz (128 kbps), $t_r = t_f = 200$ ns, $V_{IH} = 3V$, $V_{IL} = -3V$, duty cycle = 50%.

Note 7: If receiver inputs are unconnected, receiver output is a logic high.

Note 8: Refer to typical curves. Driver output slew rate is measured from the +3V to the -3V level on the output waveform. Inputs not under test are connected to V_{CC} or GND. Slew rate is determined by load capacitance. To comply with a 30 $V/\mu s$ maximum slew rate, a minimum load capacitance of 390 pF is recommended.

Parameter Measurement Information

TL/F/12613-4
FIGURE 2. Driver Propagation Delay and Transition
Time Waveforms Slew Rate (SR) = 6V/(t_r or t_f)

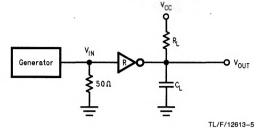


FIGURE 3. Receiver Propagation Delay and Transition Time Test Circuit (Note 6)

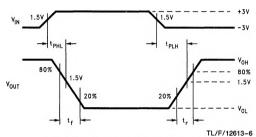


FIGURE 4. Receiver Propagation Delay and Transition Time Waveform

Pin Descriptions

Pin #	No.	Description
2, 3, 4, 7, 9	D _{IN}	Driver Input Pins, RS-232 Levels
12, 14, 17, 18, 19	D _{OUT}	TTL Level Driver Outputs
13, 15, 16	R _{IN}	TTL Level Receiver Inputs
5, 6, 8	Rout	Receiver Output Pins, RS-232 Levels
GND	GND	Ground
20	٧+	Positive Power Supply Pin (+9.0 \leq V+ \leq +13.2)
11	٧-	Negative Power Supply Pin (-9.0 ≤ V ⁻ ≤ -13.2)
1	Vcc	Positive Power Supply Pin (+5V ±5%)

Applications Information

In a typical Data Terminal Equipment (DTE) to Data Circuit-Terminating Equipment (DCE) 9-pin de-facto interface implementation, 2 data lines and 6 control lines are required. The data lines are TXD and RXD. The control lines are RTS, DTR, DSR, DCD, CTS and RI.

The DS14196 is a 5×3 Driver/Receiver and offers a single chip solutuion for this DTE interface. As shown in Figure 5, this interface allows for direct flow-thru interconnect. For a more conservative design, the user may wish to insert ground traces between the signal lines to minimize cross talk.

LapLink COMPATIBILITY

The DS14196 can easily provide 128 kbps data rate under maximum driver load conditions of $C_L=2500$ pF and $R_L=3$ k Ω , while power supplies are:

$$V_{CC} = +4.75V, V^{+} = 10.8V, V^{-} = -10.8V$$

MOUSE DRIVING

A typical mouse can be powered from the drivers. Two driver outputs connected in parallel and set to V_{OH} can be used to supply power to the V $^+$ pin of the mouse. The third driver output is set to V_{OL} to sink the current from the V $^-$ terminal. Refer to typical curves of V_{OUT}/I_{OUT} . Typical mouse specifications are:

10 mA at +6V 5 mA at -6V

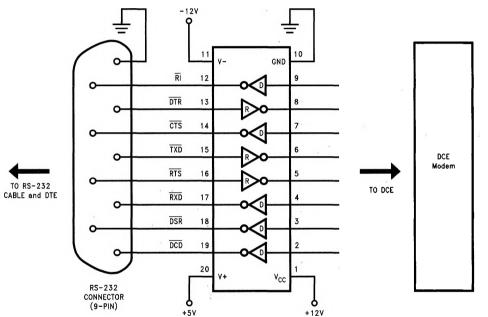


FIGURE 5. Typical DCE Application