

Burr-Brown IC Data Book—Data Conversion Products

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Vpp)	-0.3V to +7.0V
Input Voltage (V _N)	
Soldering Temperature	+255°C
Soldering Time	
Storage Temperature	

PACKAGE INFORMATION®

PACKAGE	NUMBER
Pin Plastic DIP	215 252
	Pin Plastic DIP

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

DC SPECIFICATIONS

ELECTRICAL

 $V^{}_{\rm DD}$ = 4.5V to 5.5V, $V^{}_{\rm SS}$ = 0V, $T^{}_{\rm A}$ = –20°C to +80°C unless otherwise specified.

					DF1750P/U	J	
PARAMETER	PIN	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNIT
INPUTS						1	
Logic Family	į –				CMOS	i i	
Logic Voltages	XTI	٧,,	For Clock Input			0.3V ₀₀	٧
	XTI	V _{KL1} V ₀₁₁	For Clock Input	0.7V _{pp}		0.0	٧
	X⊤I		For AC Coupling	1.8			V _{p.p}
	(1).(2)	V _{II2}	FSEN = H			0.5	
	(1),(2)	V _{ite}	FSEN = H	2.4			V
Logic Currents	XTI	1. Ing -	V _N = 0V	*	5	10	μA
	XTI	l _{int}	$V_{iN} = V_{DO}$		5	10	μA
	(1).(2)	ha	$V_{\rm N} = 0 \tilde{V}, FSEN = H$		10	20	μA
Input Leakage Current	(1).(2)	I _{LHI}	V _{IN} = V _{DO} , FSEN = H			1.0	μA
OUTPUTS							
Logic Family	ł				CMOS		
Logic Voltages	(2),(3)	v	l _{or} = 1.6mA, FSEN = L		0.000	0.4	.v
	(2).(3)	V _{ol} V _{oH}	$I_{OH} = -0.4$ mA, FSEN = L	2.5			
POWER SUPPLY REQUIREMENTS Supply Voltage	:	V ₀₉₁ , V ₀₀₂			+5		v
Supply Current		001 002	V ₁₀ = 5V ⁽⁴⁾ , FSEN = H		+3	30	mA
Power Dissipation		• I _D	Nominal V _{pp}			250	mW
TEMPERATURE RANGE (AMBIENT, T,)							
Specification				-20		+80	°C
Operating				-20		+80	°C

NOTES: (1) Refers to pins SCSL1, SCSL2, TEST, 2DS, IMOD, DINR, IBCK, DINL, 0W20, MUTE, OBPOL, LRPOL, FSEN, CKEN. (2) Refers to pins BCK, WDCK, LRCK. (3) Refers to pins CKO, CC, BBC, IBO, DOUT. (4) Test Condition; SCSL1 + H, SCSL2 + H, TEST + H, 2DS + H, IMOD = H, 0W20 = H, MUTE + H, OBPOL = H, FSEN = L, CKEN = L. T_{cv} = 38ns (XTI Clock Period), C₁= 0pF (Capacitive Load), DINL, DINR (Applicable Input Data).

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the users own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

8.3.160

Burr-Brown IC Data Book—Data Conversion Products

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

AC SPECIFICATIONS

ELECTRICAL

 V_{op} = 4.5V to 5.5V, V_{ss} = 0V, T_{A} = -20°C to +80°C unless otherwise specified.

XTI Clock

		COND	DITION	SYS	DF1750P/U				
PARAMETER	SYMBOL	SCSL1	SCSL2	FREQ	MIN	Түр	MAX	UNIT	
Crystal Oscillator Frequency	F _{oec}	H H L	H L H L	512fs ⁽¹⁾ 256fs 768fs 384fs	8 4 12 6		26 13 26 20	MHz MHz MHz MHz	XTI
External Clock Pulse Width	t _{cw}	H <u></u> H L	H . L H L	512fs 256fs 768fs 384fs	15 38 15 25		70 140 50 100	ns NS NS NS	AC Coupling is required with an external clock.
External Clock Pulse Period	t _{ev}	H H L	H L L	512ts 256ts 768ts 384ts	38 77 38 50		125 250 84 167	ns ns ns ns	

NOTE: (1) fs = Sampling frequency.

ADC CONTROL SIGNAL TIMING (CC, BBC, AND IBO) WITH IMOD = H

PARAMETER							
	SYMBOL	MIN	TYP	MAX	UNIT		
205 = H							
CC Pulse Width (H)	T1	65	1/256fs		ns		
S/H Acquisition Time	T2	670	9/256fs		ns		
CC-BBC Time	Т3	285	4/256fs		ns	cc1.5V	
BBC Pulse Period	T4	228	3/256fs	1	ns		
BBC Pulse Width (H)	T5	65	1/256fs		ns		0
BBC Pulse Width (L)	T6	140	2/256fs		ns	T2 T3 T5	9
BBC-IBO Time	T7	140	2/256fs		ns		Ň
IBO Pulse Period	T8	228	3/256fs		ns	BBC	
IBO Pulse Width (H)	T9	140	2/256fs		ns		L ÚL -
IBO Pulse Width (L)	T10	65	1/256fs		ПŜ	16	DF1750
2DS = L							
CC Pulse Width (H)	T1	130	1/256fs		ns	T9	
S/H Acquisition Time	T2	1350	9/256fs		ns		8.3
CC-BBC Time	тз	570	4/256fs	1	ns	во -/-\/-\\\	0.5
BBC Pulse Period	T4	456	3/256fs		ns		
BBC Pulse Width (H)		130	1/256fs		ns	T10	L
BBC Pulse Width (L)	Т6	280	2/256fs		ns		ā
BBC-IBO Time	17	280	2/256fs		ns		
IBO Pulse Period	T8	456	3/256fs	ļ	ns		
IBO Pulse Width (H)	Т9	280	2/256fs		ns		CO I
IBO Pulse Width (L)	T10	130	1/256fs		ns		H
							DIGITAL AUDIO PRODUCTS

BURR-BROWN® Burr-Brown IC Data Book—Data Conversion Products

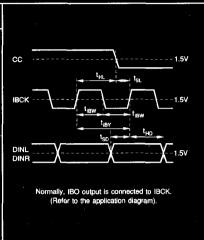
			DF1750P/U			
PARAMETER SYMBOL	SYMBOL	MIN	TYP	MAX	UNIT	
2DS = H						
IBCK Pulse Width	t _{ew}	50	1/256fs		ns	
IBCK Pulse Period	t _{iBY}	3/12.928MHz ⁽¹⁾	3/256fs		ΠS	CC
Data Word Latch	t _{sL}	50			ns	
Set-up Time						t _{HL} 🛌 ^t sl 🖛
Data Word Latch	t _{ne}	50			ns	
Hold Time						
DINL, DINR	t _{so}	25			ns	BCK
Set-up Time						
DINL, DINR	t _{HD}	25			ns	t _{IBY}
Hold Time						t _{HD}
2DS = L						
						DINL
IBCK Pulse Width	LIEW	50	1/128fs		ns	
BCK Pulse Period	LIBY	3/12.928MHz(1)	3/1281s		ns	
Data Word Latch Set-up Time	t _{si}	50			ns	Normally, IBO output is connected to IBCK
Data Word Latch		50			ns	(Refer to the applications diagram).
Hold Time	t _{HL}	50			15	
DINL, DINR	t _{so}	25			ns	
Set-up Time	50				13	
DINL, DINR	t t _{HO}	25			ns	
Hold Time	140				115	

NOTE: (1) 12.928MHz = 256 x 50.5kHz (max sampling frequency).

ADC CONTROL SIGNAL TIMING (CC, BBC, AND IBO) WITH IMOD = L

			DF1750P/U		
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT
2DS = H					
CC Pulse Width (H)	t _{cow}		1/8fs		ns
BBC Pulse Width	t _{eew}	130	1/128fs		ns
BBC Pulse Period	L ^{BBA}	100	1/64fs		ns
IBO Pulse Width IBO Pulse Period	t _{BOW}	130	1/128fs 1/64fs		ns Ns
CC-BBC Time	t _{BOY}	-5	0	20	ns
CC-IBO Time	t _{ccso}	130	1/128fs		ns
BBC-IBO Time	teseo	130	1/128fs		ns
2DS = L					
CC Pulse Width (H)	t _{cow}		1/4fs		ns
BBC Pulse Width	teew	280	1/64fs		ns
BBC Pulse Period	t _{BBY}		1/32fs		ns
IBO Pulse Width IBO Pulse Period	Bow	280	1/64fs 1/32fs		ns
CC-BBC Time	teor	-5	0	20	ns ns
CC-IBO Time	¹ ссвв t _{ссво}	280	1/64 1 s		ns
BBC-IBOTime	t _{BBBO}	280	1/64fs		пѕ

8.3.162

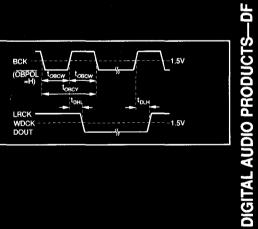

Burr-Brown IC Data Book—Data Conversion Products

Or, Call Customer Service at 1-800-548-6132 (USA Only)

SERIAL INPUT TIMING (IBCK, DINL, DINR) WITH IMOD = L

			DF1750P/U		
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT
2DS = H					
IBCK Pulse Width	Lew	100	1/128fs		ns
IBCK Pulse Period	t _{iBY}	1/3.232MHz ⁽¹⁾	1/64fs		ns
Data Word Latch Set-up Time	t _{si}	50			ns
Data Word Latch Hold Time	t _{HL}	50			ns
DINL, DINR Set-up Time	t _{sp}	25			ns
DINL, DINR	t _{uo}	25			ns
Hold Time					
2DS = L					
IBCK Pulse Width	t _{iew}	100	1/64fs		ns
IBCK Pulse Period		1/3.232MHz ⁽¹⁾	1/32fs		ns
Data Word Latch Set-up Time	t _{st}	50			ns
Data Word Latch Hold Time	t _{ni}	50			ns
DINL, DINR Set-up Time	t _{s0}	25			ns
DINL, DINR Hold Time	t _{HD}	25			ns

NOTE: (1) 3.232MHz = 64 x 50.5kHz (max sampling frequency).

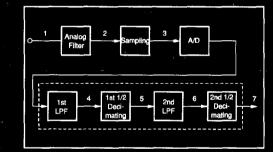

SERIAL OUTPUT TIMING WITH FSEN = H

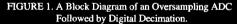
			F1750P/	U			· · · · · · · · · · · · · · · · · · ·	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	REMARKS	LRCK 1.5V	
BCK Pulse Width	t _{ecw}	100	1/128fs		ns	:		
BCK Pulse Period LRCK Pulse Width	t _{ecv} t _{icw}	1/3.232MHz ⁽¹⁾	1/64ts 1/2fs		ns µs	Duty = 50%		0
LRCK Pulse Period	LCW	1/50.5kHz	1/fs		μs		вск 1.5V	75
LRCK Set-up Time LRCK Hold Time	t _a	50 50		•	ns			
Output Data	t _e	0			ns	C _L = 0pF	(OBPOL = H) t _{BCY}	l d
Hold Time Output Data	t,			100	ns	C, = 15pF		
Delay Time							DOUT X X 1.5V	
							/////	8.3

NOTE: (1) 3.232MHz = 64 x 50.5kHz (max sampling frequency)

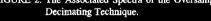
SERIAL OUTPUT TIMING WITH FSEN = L

			DF1750P/L)		
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	BCK
BCK Pulse Width BCK Pulse Period WDCK Pulse Width WDCK Pulse Width LRCK Pulse Vidth LRCK Pulse Period Output Data Delay Time	tовсм tовсу twocw twocv tuncw tuncw tuncw tuncy tonu tonu tonu	-10 -10	1/128fs 1/64fs 1/4fs 1/2fs 1/2fs 1/fs	30 30	ns ns µs µs µs ns ns	(ÖBF

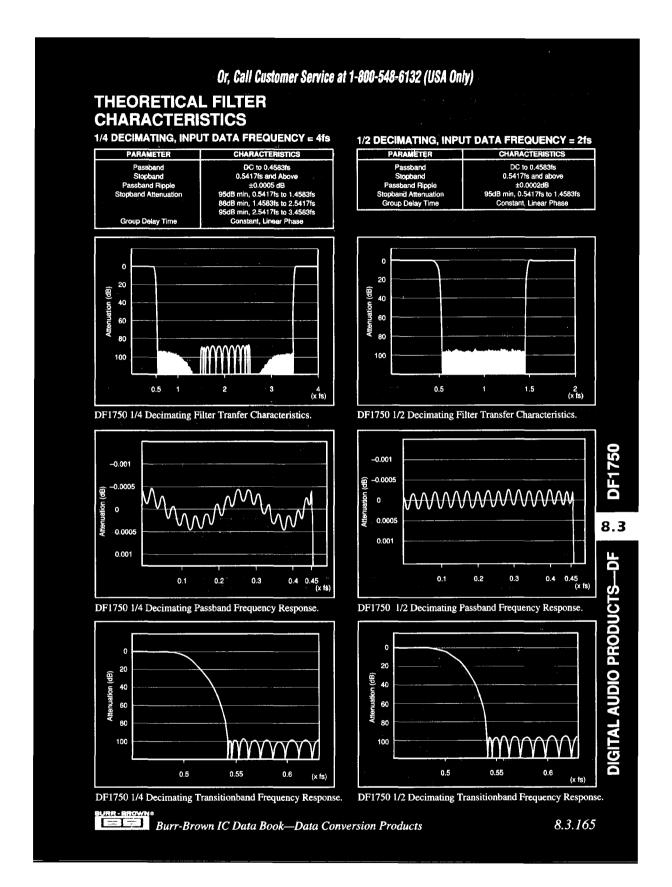



BURR-BROWNS Burr-Brown IC Data Book—Data Conversion Products

THEORY


According to the Nyquist Theorem, digital audio recordings sampled at a rate of 44.1kHz (CD) or 48kHz (DAT) should accurately reproduce the full 20kHz audio bandwidth. Unfortunately, if frequencies higher than 1/2 the sample rate are seen at the input of an analog-to-digital converter, aliasing back into the baseband will occur. At these sample frequencies, the way to assure that aliasing does not occur is to use complicated high order filters at the input of the ADC. These filters can be expensive and they can also have undesirable phase characteristics. These problems can be avoided by using an oversampling ADC (such as the PCM1750) with a decimating filter, where a high order filter can be replaced with a low order filter which has very little phase distortion (Figure 1).

With the oversampling-decimating technique, the input signal (Figure 2a) is band limited by a low order analog low-pass filter as shown in Figure 2b. This signal is 4-times oversampled, with its spectra and foldover noise shown in Figure 2c. The DF1750 first rejects the high frequency components of the 4fs ADC output (Figure 2d). A 1/2 decimating filter then processes this data into a 2fs data stream. This output spectra is shown in Figure 2e. The high frequency components of the 2fs data are then removed, producing the output spectra shown in Figure 2f. A second 1/2 decimating filter processes the 2fs data to a final fs data stream and the original signal is restored without distortion (Figure 2g). Note, when operating in the 1/2 decimating mode the DF1750 processes data through the first LPF and a single 1/2 decimating filter only.


Signal (a) 2.0 4.0 x fs 1.0 3.0 Band limited by the analog filter. (b) 1.0 2.0 3.0 4.0 x fs Foldover Nolse (C) 2.0 3.0 4.0 x ts 1.0 Foldover Noise (d) Sia 2.0 4.0 x fs 1.0 3.0 Foldover Noise Foldove 2.0 1.0 3.0 4.0 x fs Foldover Noise Foldove Noise í n 2.0 3.0 4.0 x fs F/N F/N F/N F/N (q) 2.0 4.0 x fs 10 3.0 FIGURE 2. The Associated Spectra of the Oversampling-

8,3.164

Burr-Brown IC Data Book—Data Conversion Products

FUNCTIONAL DESCRIPTION

1/4 AND 1/2 DECIMATING FUNCTIONS

1/4 or 1/2 decimating filtering converts 4fs or 2fs oversampled data back to a sampling rate of fs data by a digital filtering algorithm. $\overline{2DS}$ is used to select 1/4 or 1/2 decimating.

 $2\overline{DS}$ = H; 1/4 decimating (0.5417fs ~ 3.4583fs) 2DS = L; 1/2 decimating (0.5417fs ~ 1.4583fs)

The filter arithmetic block consists of two 1/2 decimating finite impulse response (FIR) filters as shown in Figure 3.

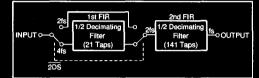


FIGURE 3. Filter Arithmetic Structure

SYSTEM CLOCK

The system clock frequency can be 256fs, 364fs, 512fs, or 768fs selectable with $\overline{SCSL1}$ and $\overline{SCSL2}$ as indicated in Table I. An external clock (applied to Pin XTI) or crystal oscillator (Pins XTI and XTO) can be employed. AC coupling is required for an external clock.

The XTI input clock is available as an output at pin CKO, when $\overrightarrow{CKEN} = L$. CKO stays low when $\overrightarrow{CKEN} = H$.

SCSL1			н		L		
SCSL2		н	L	Н	L		
XTI Glock Frequency	F _{xi}	512fs	256ts	768fs	384fs		
Clock Input				l Clock or Oscillator	= -		
Internal System Clock Frequency	F _{sys}		25	6fs			

TABLE I. System Clock and Internal Clock Frequency Selection.

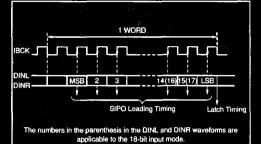
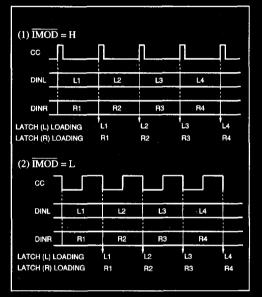
SERIAL DATA INPUT

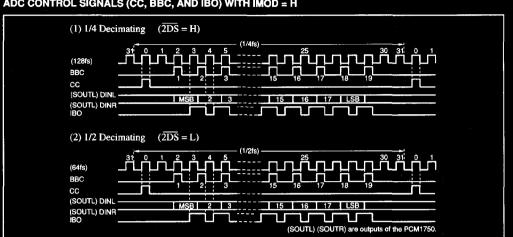
The DF1750 is programmed for accepting the correct number of input data bits per word by the \overline{IMOD} pin. A 16-bit input word is selected with $\overline{IMOD} = L$ and an 18-bit input word is selected with $\overline{IMOD} = H$. Set $\overline{IMOD} = H$ for use with the PCM1750. The serial input data format is two's complement and MSB first. Both the left and right channel data are loaded into the DF1750 simutaneously.

Each bit of the data is loaded to each channel's SIPO (Serial/ parallel conversion register) by the rising edge of the Input Bit Clock, IBCK (Figure 4). After the serial input data is loaded, the data is latched into a parallel register by the rising edge of CC for $\overline{IMOD} = H$ and the falling edge of CC for $\overline{IMOD} = L$ (Figure 5).

8.3.166

Burr-Brown IC Data Book—Data Conversion Products


FIGURE 4. SIPO Input Data Loading Timing.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

ADC CONTROL SIGNALS (CC, BBC, AND IBO) WITH IMOD = H

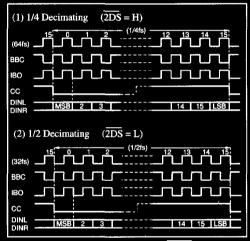


FIGURE 7. ADC Control Signals with $\overline{\text{IMOD}} = L$.

OUTPUT INTERFACE

(BCK, WDCK, LRCK, OBPOL, LRPOL, FSEN) The output of the DF1750 can be interfaced to many different devices by programming the output interface pins. These pins provide the following functions:

a. Output control clocks, BCK, WDCK, LRCK I/O selection (FSEN).

FSEN = H; BCK WDCK, LRCK = Input FSEN = L; BCK WDCK, LRCK = Output

- b. Sampling rate clock (LRCK) When FSEN = H, apply a 50% duty cycle sampling frequency (fs) to pin LRCK. When FSEN = L, a fs clock generated from the system clock is available at pin LRCK.
- F1750 c. Word Clock (WDCK) When FSEN = L, WDCK provides a 2fs clock that is derived from the system clock.
- d. Output bit clock When FSEN = H, apply a 64fs clock to pin BCK. When FSEN = L, a 64fs clock generated from the system 8.3 clock is available at pin BCK.
- e. LRCK polarity selection (\overline{LRPDL}) $\overline{LRPOL} = H$; Lch/Rch = Low/High $\overline{LRPOL} = L$; Lch/Rch = High/Low (Regardless of LRCK's I/O mode).

f. BCK polarity selection (OBPOL) $\overline{OBPOL} = H$; DOUT changes state at rising edge of BCK. $\overline{OBPOL} = L$; DOUT changes state at falling edge of BCK.

(Regardless of BCK's I/O mode).

g. Timing relation between XTI and BCK, WDCK, LRCK clocks.

When $\overline{\text{FSEN}}$ = H, clocks to BCK and LRCK must be synchronized to XTI. However, there is no limit on their phase differences (between XTI and BCK, LRCK clocks).

BURR-BROWN® Burr-Brown IC Data Book—Data Conversion Products

8.3.167

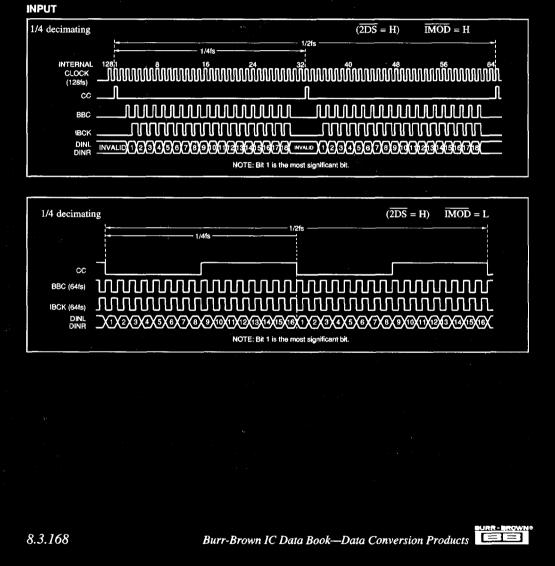
PRODUCTS-DF

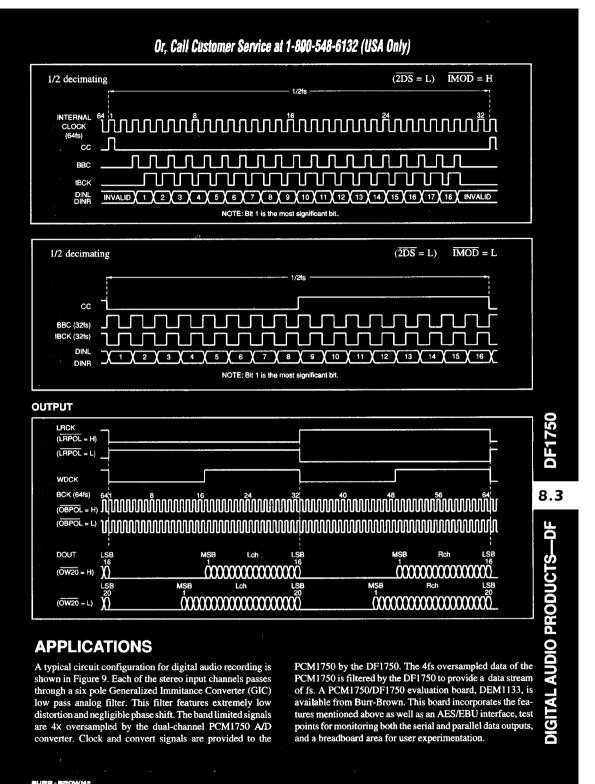
DIO

AUD

DIGITAL

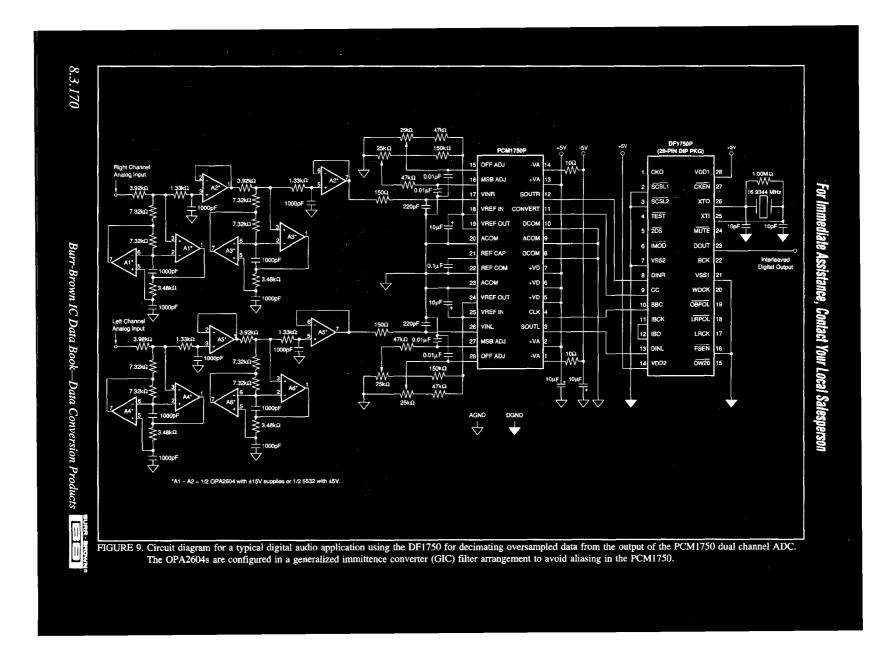
SERIAL DATA OUTPUT


The number of bits per output data word is selected with the $\overrightarrow{OW20}$ pin. With $\overrightarrow{OW20}$ = H a 16-bit output is selected and with $\overrightarrow{OW20}$ = L a 20-bit output is selected.


The serial output data format is two's complement and MSB first. The left and right channel outputs are alternated, with the left channel preceeding the right channel. Each data word is allocated in each pulse of LRCK and the LSB is located at the end of the LRCK pulse as shown in Figure 8. The output of the DF1750 can be muted by the use of the MUTE pin. When MUTE = L, the output stays low (muted). Under normal operation MUTE = H.

LRCK	-			ſ		}
(LRPOL	н)					
			Lch WORD		Rch WORD	
DOUT		M	SB LSB		MSBLSB	
100 C						

FIGURE 8. Output Timing.


TIMING DIAGRAMS

Burr-Brown IC Data Book—Data Conversion Products

