8-Bit, Octal, 4-Quadrant Multiplying, CMOS TrimDAC

## DAC8840

## FEATURES

Replaces 8 Potentiometers
1 MHz 4-Quadrant Multiplying Bandwidth
No Signal Inversion
Low Zero Output Error
Eight Individual Channels
3-Wire Serial Input
500 kHz Update Data Loading Rate
$\pm 3$ Volt Output Swing
Midscale Preset, Zero Volts Out

## APPLICATIONS

Automatic Adjustment
Trimmer Replacement
Dynamic Level Adjustment
Special Waveform Generation and Modulation

## GENERAL DESCRIPTION

The DAC-8840 provides eight general purpose digitally controlled voltage adjustment devices. The TrimDAC ${ }^{( }$capability allows replacement of the mechanical trimmer function in new designs. The DAC-8840 is ideal for ac or dc gain control of up to 1 MHz bandwidth signals. The 4-quadrant multiplying capability is useful for signal inversion and modulation often found in video convergence circuitry.
Internally the DAC- 8840 contains eight voltage output CMOS digital-to-analog converters, each with separate reference inputs Each DAC has its own DAC register which holds its output state. These DAC registers are updated from an internal serial-to-parallel shift register which is loaded from a standard 3-wire serial input digital interface. Twelve data bits make up the data word clocked into the serial input register. This data word is decoded where the first 4 bits determine the address of the DAC register to be loaded with the last 8 bits of data. A serial data output pin at the opposite end of the serial register allows simple daisy-chaining in multiple DAC applications without additional external decoding logic.

TrimDAC is a registered trademark of Analog Devices, Inc.

REV. A
nformation furnished by Analog Devices is believed to be accurate and eliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or which may result from its use. No license is granted by implication
otherwise under any patent or patent rights of Analog Devices.

Atlantic 215/643-7790

DAG8840 - SDEGIFTGATIONG $\begin{aligned} & \left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \text { All } \mathrm{V}_{I N} X=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { apply }\right. \\ & \text { for DAC-8840F, unless otherwise noted) }\end{aligned}$

| Parameter | Symbol | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STATIC ACCURACY <br> Resolution <br> Integral Nonlinearity Differential Nonlinearity Output Offset Output Offset Drift | N <br> INL <br> DNL <br> $V_{\text {BZE }}$ <br> $\mathrm{TCV}_{\mathrm{BZ}}$ | All Specifications Apply for DACs A, B <br> All Devices Monotonic $\overline{\mathrm{PR}}=0, \text { Sets } \mathrm{D}=80_{\mathrm{H}}$ $\overline{\mathrm{PR}}=0 \text {, Sets } \mathrm{D}=80_{\mathrm{H}}$ | $\begin{aligned} & \mathrm{D}, \\ & 8 \end{aligned}$ | $\begin{aligned} & \text {, G, H } \\ & \pm 1 / 4 \\ & 3 \\ & 10 \end{aligned}$ | $\begin{aligned} & \pm 1 \\ & \pm 1 \\ & 25 \end{aligned}$ | Bits <br> LSB <br> LSB <br> mV <br> $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| REFERENCE INPUTS <br> Voltage Range Input Resistance Input Capacitance | $\begin{aligned} & \mathrm{IVR} \\ & \mathrm{R}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{IN}} \end{aligned}$ | Applies to All Inputs $\mathrm{V}_{\mathbf{I N}} \mathrm{X}$ Note 1 <br> $\mathrm{D}-2 \mathrm{~B}_{\mathrm{H}}$, Code Dependent <br> $\mathrm{D}=\mathrm{FF}_{\mathrm{H}}$, Code Dependent |  | $\begin{aligned} & 6 \\ & 19 \end{aligned}$ | 30 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$ |
| DAC OUTPUTS <br> Voltage Range Output Current Capacitive Load | $\begin{aligned} & \text { OVR } \\ & \mathrm{I}_{\text {OUT }} \\ & \mathrm{C}_{\mathrm{L}} \end{aligned}$ | $\begin{aligned} & \text { Applies to All Outputs } \mathrm{V}_{\text {OUT }} \mathrm{X} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \Delta \mathrm{~V}_{\mathrm{OUT}}<1 \mathrm{LSB} \\ & \text { No Oscillation } \end{aligned}$ |  | $\pm 10$ | 200 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$ |
| DYNAMIC PERFORMANCE <br> Multiplying Gain Bandwidth Slew Rate <br> Positive <br> Negative <br> Total Harmonic Distortion <br> Spot Noise Voltage <br> Output Settling Time <br> Channel-to-Channel Crosstalk <br> Digital Feedthrough | GBW <br> SR + <br> SR- <br> THD <br> $e_{N}$ <br> ${ }^{t_{s}}$ <br> $\mathrm{C}_{\mathrm{T}}$ <br> Q | Applies to All DACs <br> $\mathrm{V}_{\mathrm{IN}} \mathrm{X}=100 \mathrm{mV} \mathrm{p}-\mathrm{p}$ <br> Measured $10 \%$ to $90 \%$ $\Delta \mathrm{V}_{\text {OUT }} \mathrm{X}=+6 \mathrm{~V}$ <br> $\Delta \mathrm{V}_{\text {OUT }} \mathrm{X}=-6 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}} \mathrm{X}=4 \mathrm{Vp}-\mathrm{p}, \mathrm{D}=\mathrm{FF}_{\mathrm{H}}$ $\mathrm{f}=1 \mathrm{kHz}, \mathrm{f}_{\mathrm{LP}}=80 \mathrm{kHz}$ <br> $\mathrm{f}=1 \mathrm{kHz}$ <br> $\pm 1$ LSB Error Band, $\mathrm{D}=0$ to $\mathrm{FF}_{\mathrm{H}}$ <br> Measured Between Adjacent Channels, $\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{INX}}=0 \mathrm{~V}, \mathrm{D}=0 \text { to } 255_{10} \end{aligned}$ | 1.3 <br> 1.3 <br> 60 | $\begin{aligned} & 2.5 \\ & \\ & 4.0 \\ & 2.5 \\ & 0.01 \\ & \\ & 0.17 \\ & 3.5 \\ & 80 \\ & 6 \end{aligned}$ | 6 | MHz <br> $\mathrm{V} / \mu \mathrm{s}$ <br> V/us <br> \% <br> $\mu \mathrm{V} / \sqrt{\mathrm{Hz}}$ <br> $\mu \mathrm{s}$ <br> dB <br> nVs |
| POWER SUPPILIES <br> Power Supply Current Negative Supply Current Power Dissipation DC Power Supply Rejection Ratio Power Supply Range | $\mathrm{I}_{\mathrm{DD}}$ <br> $\mathrm{I}_{\mathrm{SS}}$ <br> $\mathrm{P}_{\text {DISS }}$ <br> PSRR <br> PSR | $\begin{aligned} & \overline{\mathrm{PR}}=0 \mathrm{~V} \\ & \overline{\mathrm{PR}}=0 \mathrm{~V} \\ & \overline{\mathrm{PR}}=0 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{DD}}= \pm 5 \% \\ & \mathrm{~V}_{\mathrm{DD}},\left\|\mathrm{~V}_{\mathrm{SS}}\right\| \end{aligned}$ | 4.75 | $\begin{aligned} & 19 \\ & 19 \\ & 190 \\ & 0.0002 \\ & 5.00 \end{aligned}$ | $\begin{aligned} & 26 \\ & 26 \\ & 260 \\ & 0.01 \\ & 5.25 \end{aligned}$ | mA <br> mA <br> mW <br> $\% / \%$ <br> V |
| DIGITAL INPUTS <br> Logic High Logic Low Input Current Input Capacitance Input Coding | $\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{L}} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$ |  | $2.4$ <br> Offse | 7 nary | $\begin{aligned} & 0.8 \\ & \pm 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$ |
| $\begin{aligned} & \hline \text { DIGITAL OUTPUT } \\ & \text { Logic High } \\ & \text { Logic Low } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$ | 3.5 |  | 0.4 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |

NOTE
${ }^{1}$ Maximum input voltage is always 2 V less than $\mathrm{V}_{\mathrm{DD}}$.
Specifications subject to change without notice.


| Parameter | Symbol | Min | Max | Units |
| :--- | :--- | :--- | :--- | :--- |
| Input Clock Pulse Width | $\mathrm{t}_{\mathrm{CH}}, \mathrm{t}_{\mathrm{CL}}$ | 80 |  | ns |
| Data Setup Time | $\mathrm{t}_{\mathrm{DS}}$ | 40 |  | ns |
| Data Hold Time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | ns |
| CLK to SDO Propagation Delay | $\mathrm{t}_{\mathrm{PD}}$ |  | 120 | ns |
| DAC Register Load Pulse Width | $\mathrm{t}_{\mathrm{LD}}$ | 70 |  | ns |
| Preset Pulse Width | $\mathrm{t}_{\mathrm{PR}}$ | 50 |  | ns |
| Clock Edge to Load Time | $\mathrm{t}_{\mathrm{CKLD}}$ | 30 |  | ns |
| Load Edge to Next Clock Edge | $\mathrm{t}_{\mathrm{LDCK}}$ | 60 |  | ns |

## DAC8840

## WAFER TEST LIMITS: $\left(v_{D D}=+5 \mathrm{v}, \mathrm{v}_{\mathrm{SS}}=-5 \mathrm{v}\right.$, All $\mathrm{v}_{\mathrm{m}} \mathrm{X}=+3 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| Parameter | Symbol | Conditions | DAC8840GBC <br> Limits | Units |
| :---: | :---: | :---: | :---: | :---: |
| Integral Nonlinearity | INL |  | $\pm 1$ | LSB max |
| Differential Nonlinearity | DNL | All Devices Monotonic | $\pm 1$ | LSB max |
| Output Offset | $\mathrm{V}_{\text {BZE }}$ | $\overline{\mathrm{PR}}=0$, Sets $\mathrm{D}=80_{\mathrm{H}}$ | 25 | mV max |
| Input Resistance ( $\mathrm{V}_{\mathrm{IN}} \mathrm{X}$ ) | $\mathrm{R}_{\text {IN }}$ | $\mathrm{D}=2 \mathrm{~B}_{\mathrm{H}} ;$ Code Dependent | 3 | $k \Omega$ min |
| DAC Output Voltage Range | OVR | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ | $\pm 3$ | $V$ min |
| DAC Output Current | $\mathrm{I}_{\text {Out }}$ | $\Delta \mathrm{V}_{\text {OUT }}<1$ LSB | $\pm 5$ | mA min |
| Slew Rate |  | Measured 10\% to 90\% |  |  |
| Positive | SR+ | $\Delta \mathrm{V}_{\text {OUT }} \mathrm{X}=+6 \mathrm{~V}$ | 1.3 | $\mathrm{V} / \mathrm{\mu s} \min$ |
| Negative | SR- | $\Delta \mathrm{V}_{\text {OUT }} \mathrm{X}=-6 \mathrm{~V}$ | 1.3 | $\mathrm{V} / \mathrm{\mu s}$ min |
| Positive Supply Current | $\mathrm{I}_{\text {DD }}$ | $\overline{\mathrm{PR}}=0 \mathrm{~V}$ | 26 | $m A$ max |
| Negative Supply Current | $\mathrm{I}_{\text {S }}$ | $\overline{\mathrm{PR}}=0 \mathrm{~V}$ | 26 | $m A$ max |
| DC Power Supply Rejection Ratio | PSRR | $\overline{\mathrm{PR}}=0 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{DD}}= \pm 5 \%$ | 0.01 | \%/\% max |
| Logic Input High | $\mathrm{V}_{\mathrm{IH}}$ |  | 2.4 | $V$ min |
| Logic Input Low | $\mathrm{V}_{\mathrm{IL}}$ |  | 0.8 | $V$ max |
| Logic Input Current | $\mathrm{I}_{\mathrm{L}}$ |  | $\pm 10$ | $\mu \mathrm{A}$ max |
| Logic Output High | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$ | 3.5 | $V$ min |
| Logic Output Low | $\mathrm{V}_{\text {OI }}$ | $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ | 0.4 | V max |

NOTE
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guar anteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.


Detall. Serial data input timing ( $\overline{\text { PR }}=$ " $1 "$ )


PRESET TIMING


Figure 1. Timing Diagram

REV. A

## DAC8840

## PIN DESCRIPTION

| PIN | MNEMONIC | DESCRIPTION |
| :---: | :---: | :---: |
| 1 | $\mathrm{V}_{\text {out }} \mathrm{C}$ | DAC C Output |
| 2 | $\mathrm{V}_{\text {out }}{ }^{\text {B }}$ | DAC B Output |
| 3 | $\mathrm{V}_{\text {our }}{ }^{\text {a }}$ | DAC A Output |
| 4 | $\mathrm{V}_{1 \mathrm{IN}} \mathrm{B}$ | DAC B Reference Input |
| 5 | $V_{1 m}{ }^{\text {a }}$ | DAC A Reference Input |
| 6 | GND | Ground |
| 7 | $\overline{\mathrm{PR}}$ | Preset Input, Active Low, |
| 8 | $\mathrm{V}_{1 \mathrm{NE}} \mathrm{E}$ | DAC E Reference Input |
| 9 | $\mathrm{V}_{\text {INF }}$ | DAC F Reference Input |
| 10 | $\mathrm{V}_{\text {out }} \mathrm{E}$ | dAC E Output |
| 11 | $\mathrm{V}_{\text {out }} \mathrm{F}$ | dAC F Output |
| 12 | $\mathrm{V}_{\text {out }} \mathrm{G}$ | DAC G Output |
| 13 | $\mathrm{Vout}^{\text {H }}$ | DAC H Output |
| 14 | $\mathrm{V}_{\text {ING }}$ | DAC G Reference Input |
| 15 | $\mathrm{V}_{\text {INH }}$ | DAC H Reference Input |
| 16 | LD | Load DAC Register Strobe, Active High Input That Transfers the Data Bits from the Serial Input Register into the Decoded DAC Register See Table |
| 17 | clk | Serial Clock Input, Positive Edge Triggered |
| 18 | SDo | Serial Data Output, Active Totem Pole Output |
| 19 | $\mathrm{v}_{\text {ss }}$ | Negative 5 V Power Supply |
| 20 | SDI | Serial Data Input |
| 21 | $\mathrm{V}_{\mathrm{DD}}$ | Positive 5 V Power Supply |
| 22 | $\mathrm{V}_{\text {IND }} \mathrm{D}$ | DAC D Reference input |
| 23 | $\mathrm{V}_{1 \mathrm{c}} \mathrm{c}$ | DAC C Reference Input |
| 24 | $\mathrm{V}_{\text {out }} \mathrm{D}$ | DAC D Output |

ABSOLUTE MAXIMUM RATINGS

| $V_{\text {DD }}$ to GND | V |
| :---: | :---: |
| $\mathrm{V}_{\text {ss }}$ to GND | +0.3, -7 V |
| $\mathrm{V}_{\text {IN }} \mathrm{X}$ to GND | $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SS }}$ |
| $\mathrm{V}_{\text {Out }} \mathrm{X}$ to GND | $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {S }}$ |
| Short Circuit $\mathrm{I}_{\text {Out }} \mathrm{X}$ to GND | Continuous |
| Digital Input \& Output Voltage to GND |  |
| Operating Temperature Range |  |
| Extended Industrial: DAC8840F | $-40^{\circ} \mathrm{C}$ to |
| Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{I}}$ max) | $+150^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 10 sec ) | +300 |
| Package Power Dissipation | T $\left.{ }_{\text {Jax }}-\mathrm{T}_{\mathrm{A}}\right) /{ }^{\text {d }}$ |
| Thermal Resistance $\theta_{\text {JA }}$ |  |
| Cerdip | $.64{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| P-DIP | $57^{\circ} \mathrm{C} /$ |
| SOIC-24 |  |

ORDERING GUIDE

| Model | Temperature <br> Range | Package <br> Description | Package <br> Option |
| :--- | :--- | :--- | :--- |
| DAC8840FP | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Plastic DIP | $\mathrm{N}-24$ |
| DAC8840FW | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Cerdip | $\mathrm{Q}-24$ |
| DAC8840FS | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | SOL-24 | R-24 |
| DAC8840GBC | $25^{\circ} \mathrm{C}$ | DICE |  |

## PIN CONFIGURATION



## DICE CHARACTERISTICS

DIE SIZE $0.117 \times 0.185$ inch, 21,645 sq. mils $(2.9718 \times 4.699 \mathrm{~mm}, 13.964 \mathrm{sq} . \mathrm{mm})$
The die backside is electrically common to $\mathrm{V}_{\mathrm{DD}}$.
The DAC8840 contains 3236 transistors.



## CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are inserted.


DAC8840


Figure 11. Pulse Response


Figure 13. Worst Case 1 LSB Digital Step Change


Figure 15. Digital Crosstalk


Figure 12. Settling Time


Figure 14. Digital Feedthrough


Figure 16. Clock Feedthrough


Figure 17. 128 kHz Sawtooth Waveform


DAC8840


Table I. Serial Input Decode Table

| SDI | CLK | LD | $\overline{\mathbf{P R}}$ | Input Shift Register Operation |
| :--- | :--- | :--- | :--- | :--- |
| X | L | L | H | No Operation |
| X | $\mathbf{S}$ | L | H | Shift One Bit In from SDI (Pin 20), <br> Shift One Bit Out from SDO (Pin 18) |
| X | X | L | L | All DAC Registers = 80 <br> H |
| X | L | H | H | Load Serial Register Data into <br> DAC(X) Register |

*Data shifted into the SDI pin appears twelve clocks later at the SDO pin.
Table II. Logic Control Input Truth Table

## DAC8840

## CIRCUIT OPERATION

The DAC-8840 is a general purpose multiple-channel ac or dc signal level adjustment device designed to replace potentiometers used in the three-terminal connection mode. Eight independent channels of programmable signal level control are available in this 24-pin package device. The outputs are completely buffered providing up to 5 mA of output drive-current to drive external loads. The DAC and amplifier combination shown in Figure 24 produces four-quadrant multiplication of the signal inputs applied to $\mathrm{V}_{\mathrm{IN}}$ times the digital input control word. In addition, the DAC- 8840 provides a 1 MHz gain-bandwidth product in the four-quadrant multiplying channel. Operating from plus and minus 5 V power supplies, analog inputs and outputs of $\pm 3 \mathrm{~V}$ are easily accommodated.

$v_{D A C}=D / 256 \mathrm{~V}_{\mathrm{IN}}$
$v_{\text {OUT }}=2 X V_{D A C}-V_{I N}$
$=2(D / 256) \times V_{1 N}-V_{\mathbb{N}}$
$=(\mathrm{D} / 128-1) \mathrm{XV}_{\mathrm{IN}}$
DAC8840 INPUT OUTPUT VOLTAGE RANGE

$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}(\mathrm{D} / 128-1)$, WHERE $\mathrm{D}=0$ TO 255
Figure 24. DAC Plus Amplifier Combine to Produce Four Quadrant Multiplication

In order to simplify use with a controlling microprocessor, a simple layout-efficient three-wire serial-data-interface was chosen. This interface can be easily adapted to almost all microcomputer and microprocessor systems. A clock (CLK), serial data input (SDI) and a load (LD) strobe pin make up the three-wire interface. The 12 -bit input data word used to change the value of the internal DAC registers contains a 4-bit address and 8 bits of data. Using this word combination any DAC register can be changed at a given time without disturbing the other channels. A serial data output SDO pin simplifies cascading multiple DAC-8840s without adding address decoder chips to the system

During system power up a logic low on the preset $\overline{\mathrm{PR}}$ pin forces all DAC registers to $80_{\mathrm{H}}$ which in turn forces all the buffer amplifier outputs to zero volts. This asynchronous input pin $\overline{\mathrm{PR}}$ can be activated at any time to force the DAC registers to the half-scale code $80_{\mathrm{H}}$. This is generally the most convenient place to start general purpose adjustment procedures.

## ADJUSTING AC OR DC SIGNAL LEVELS

The four quadrant multiplication operation of the DAC-8840 is shown in Figure 24. For dc operation the equation describing the relationship between $\mathrm{V}_{\text {IN }}$, digital inputs and $\mathrm{V}_{\text {OUT }}$ is

$$
\begin{equation*}
V_{O U T}(D)=(D / 128-1) \times V_{I N} \tag{1}
\end{equation*}
$$

where D is a decimal number between 0 and 255
The actual output voltages generated with a fixed 3 V dc input applied to $\mathrm{V}_{\text {IN }}$ are summarized in this table.

| Decimal Input (D) | $\mathbf{V}_{\text {OUT }}(\mathbf{D})$ | Comments $\left(\mathbf{V}_{\text {IN }}=\mathbf{3}\right.$ V) |
| :--- | :---: | :--- |
| 0 | -3.00 V | Inverted FS |
| 1 | -2.98 |  |
| 127 | -0.02 |  |
| 128 | 0.00 | Zero Output |
| 129 | 0.02 |  |
| 254 | 2.95 |  |
| 255 | 2.98 | Full Scale (FS) |

Table III.
Notice that the output polarity is the same as the input polarity when the DAC register is loaded with 255 (in binary = all ones). Also note that the output does not exactly equal the input voltage. This is a result of the R-2R ladder DAC architecture chosen. When the DAC register is loaded with 0 , the output polarity is inverted and exactly equals the magnitude of the input voltage $\mathrm{V}_{\mathrm{IN}}$. The actual voltage measured when setting up a DAC in this example will vary within the $\pm 1$ LSB linearity error specification of the DAC-8840. The calculated voltage error would be $\pm 0.023 \mathrm{~V}(= \pm 3 \mathrm{~V} / 128)$.

If $V_{\text {IN }}$ is an ac signal such as a sinewave then we can use equation 2 to describe circuit performance.
$V_{\text {OUT }}(t, D)=(D / 128-1) \times A \sin (\omega t)$
where $\omega=2 \pi \mathrm{f}, \mathrm{A}=$ sinewave amplitude, and $\mathrm{D}=$ decimal input code.

This transfer characteristic Equation 2 lends itself to amplitude and phase control of the incoming signal $\mathrm{V}_{\mathrm{IN}}$. When the DAC is loaded with all zeros, the output sinewave is shifted by $180^{\circ}$ with respect to the input sinewave. This powerful multiplying capability can be used for a wide variety of modulation, waveform adjustment and amplitude control.

## DAC8840

REFERENCE INPUTS ( $\left.V_{I N} A, B, C, D, E, F, G, H\right)$
The eight independent $V_{\text {IN }}$ inputs have a code dependent input resistance whose worst case minimum value $3 \mathrm{k} \Omega$ is specified in the electrical characteristics table. The graph (Figure 5) titled "Reference Input Current versus Code" shown in the typical performance characteristics section displays the incremental
changes. Use a suitable amplifier capable of driving this input resistance in parallel with the specified 19 pF typical input ca pacitance. These reference inputs are designed to receive not only dc, but ac input voltages. This results from the incorporation of a true bilateral analog switch in the DAC design (see Figure 23). The DAC switch operation has been designed to operate in the break-before-make format to minimize transient loading of the inputs. The reference input voltage range can operate from near the negative supply ( $\mathrm{V}_{\mathrm{SS}}$ ) to within 2 V of the positive supply ( $\mathrm{V}_{\mathrm{DD}}$ ). That is, the operating input voltage range is:

$$
\begin{equation*}
V_{S S}+0.5 V<V_{I N} X<\left(V_{D D^{-2}} V\right) \tag{3}
\end{equation*}
$$

DAC OUTPUTS ( $\left.\mathbf{V}_{\text {OUT }} \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H}\right)$
The eight D/A converter outputs are fully buffered by the DAC8840's internal amplifier. This amplifier is designed to drive up to $1 \mathrm{k} \Omega$ loads in parallel with 100 pF . However, in order to minimize internal device power consumption, it is recommended whenever possible to use larger values of load resistance. The amplifier output stage can handle shorts to GND; however, care should be taken to avoid continuous short circuit operation.
The low output impedance of the buffers minimizes crosstalk between analog input channels. A graph (Figure 9) of analog crosstalk between channels is provided in the typical performance characteristics section. At $1 \mathrm{MHz}, 72 \mathrm{~dB}$ of channel-tochannel isolation exists. It is recommended to use good circuit layout practice such as guard traces between analog channels and power supply bypass capacitors. A $0.01 \mu \mathrm{~F}$ ccramic in parallel with a $1-10 \mu \mathrm{~F}$ tantulum capacitor provides a good power supply bypass for most frequencies encountered.

## DIGITAL INTERFACING

The four digital input pins (CLK, SDI, LD, $\overline{\text { PR }}$ ) of the DAC 8840 were designed for TTL and 5 V CMOS logic compatibil ity. The SDO output pin offers good fanout in CMOS logic applications and can easily drive several DAC-8840s.
The Logic Control input Truth Table II describes how to shift data into the internal 12 -bit serial input register. Note that the CLK is a positive edge sensitive input. If mechanical switches are used for breadboarding product evaluation, they should be debounced by a flipflop or other suitable means.
The required address plus data input format is defined in the serial input decode Table I. Note there are 8 address states that result in no operation (NOP) or activity in the DAC-8840 when the active high load strobe LD is activated. This NOP can be used in cascaded applications where only one DAC out of several packages needs updating. The packages not requiring data changes would receive the NOP address, that is, all zeros. It takes 12 clocks on the CLK pin to fully load the serial input shift register. Data on the SDI input pin is subject to the timing diagram (Figure 1) data setup and data hold time requirements. After the twelfth clock pulse the processor needs to activate the LD strobe to have the DAC-8840 decode the serial register contents and update the target DAC register with the 8 -bit data word. This needs to be done before the thirteenth positive clock
edge. The timing requirements are provided in the electrical characteristic table and in the Figure 1 timing diagram. After welve clock edges, data initially loaded into the shift register at SDI appears at the shift register output SDO.
There is some digital feedthrough from the digital input pins. Operating the clock only when the DAC registers require updat ing minimizes the effect of the digital fccdthrough on the analog signal channels. Measurements of DAC switch feedthrough hown in the electrical characteristics table were accomplished by grounding the $\mathrm{V}_{\text {IN }} \mathrm{X}$ inputs and cycling the data codes between all zeros and all ones. Under this condition 6 nVs of feed through was measured on the output of the switched DAC channel. An adjacent channel measured less than 1 nVs of digital crosstalk. The digital feedthrough photographs shown in the typical performance characteristics section displays these characteristics (Figures 14, 15, and 16)
Figure 25 shows a three-wire interface for a single DAC-8840 that easily cascades for multiple packages.


Figure 25. Three-Wire Interface Updates Multiple DAC-8840s


(unu) pue saqэu! u! unoчs suo!suəu!c
SNOISNHWIG INITLLO

