256K x 32 Static RAM Module

Features

- High-density 8-megabit SRAM module
- 32-bit standard footprint supports densities from 16K x 32 through 1M x 32
- High-speed CMOS SRAMs
- Access time of 12 ns
- Low active power
-5.3W (max.) at 25 ns
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
— Max. height of 0.58 in.
- Available in ZIP, SIMM, and angled SIMM footprint
- 72-pin SIMM version compatible with 1M x 32 (CYM1851)

Functional Description

The CYM1841B is a high-performance 8-megabit static RAM module organized as 256 K words by 32 bits. This module is constructed from two 256K x 16 SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip
selects ($\left.\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}, \overline{\mathrm{CS}}_{4}\right)$ are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

Writing to each byte is accomplished when the appropriate Chip Select ($\overline{\mathrm{CS}}$) and Write Enable ($\overline{\mathrm{WE} \text {) inputs are both LOW. }}$ Data on the Input/Output pins (I / O) is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking the Chip Select ($\overline{\mathrm{CS}})$ LOW while Write Enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data Input/Output pins (I/O).
The data input/output pins stay at the high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.
Two pins (PD_{0} and PD_{1}) are used to identify module memory density in applications where alternate versions of the JEDEC-standard modules can be interchanged.
A 72-pin SIMM is offered for compatibility with the $1 \mathrm{M} \times 32$ CYM1851. This version is socket upgradable to the CYM1851.
Both the 64-pin and 72 -pin SIMM modules are available with either tin-lead or 10 micro-inches of gold flash on the edge contacts.

Selection Guide

	1841B-15	1841B-20	1841B-25	1841B-35	1841B-45	Unit
Maximum Access Time	15	20	25	35	45	ns
Maximum Operating Current	400	380	380	340	340	mA
Maximum Standby Current	80	80	80	80	80	mA

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential .-0.5 V to +7.0 V

DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	1841B-15		1841B-20		$\begin{gathered} 1841 \mathrm{~B} \\ -25,35,45 \end{gathered}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{1 \times}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-3	+3	-3	+3	-3	+3	uA
IOZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-2	+2	-2	+2	-2	+2	uA
${ }^{\text {ICC }}$	$V_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		400		380		340	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-down Current ${ }^{[1]}$	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$, Min. Duty Cycle = 100\%		80		80		80	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		6		6		6	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance ${ }^{[3]}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	16	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	16	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Notes:

[^0]Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	1841B-15		1841B-20		1841B-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle								
t_{RC}	Read Cycle Time	15		20		25		ns
t_{AA}	Address to Data Valid		15		20		25	ns
toha	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		15		20		25	ns
$t_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		7		8		8	ns
t LZoE	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
thzoe	$\overline{\text { OE HIGH to High Z }}$		7		8		8	ns
tLZCS	$\overline{\mathrm{CS}}$ LOW to Low ${ }^{[5]}$	3		4		4		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\overline{C S}}$ HIGH to High ${ }^{[5,6]}$		7		8		8	ns
tPD	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power-Down		15		18		18	
Write Cycle ${ }^{[7]}$								
${ }^{\text {tw }}$ w	Write Cycle Time	15		20		25		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	10		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	10		18		20		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	2		2		2		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	7		8		8		ns
t_{HD}	Data Hold from Write End	1		2		2		ns
tLZWE	$\overline{\text { WE HIGH to Low Z }}$	0		0		0		ns
thzwe	$\overline{W E}$ LOW to High Z ${ }^{[6]}$	0	6	0	8	0	8	ns

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	1841B-35		1841B-45		Unit
		Min.	Max.	Min.	Max.	
Read Cycle						
t_{RC}	Read Cycle Time	35		45		ns
t_{AA}	Address to Data Valid		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		35		45	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		25		30	ns
tlzoe	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		ns
thzoe	$\overline{\text { OE LOW to High Z }}$		15		15	ns
tLzCS	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[5]}$	10		10		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\left.\mathrm{Z}^{[5,} 6\right]$		20		20	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}}$ HIGH to Power-Down		35		45	ns
Write Cycle ${ }^{[7]}$						
$t_{\text {wc }}$	Write Cycle Time	35		45		ns

Notes:

4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.

5. $t_{H Z C S}$ and $t_{H Z W E}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{C S}$ LOW and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range (continued) ${ }^{[4]}$

Parameter	Description	1841B-35		1841B-45		Unit
		Min.	Max.	Min.	Max.	
tscs	$\overline{\mathrm{CS}}$ LOW to Write End	30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	30		40		ns
t_{HA}	Address Hold from Write End	2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	30		35		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	20		25		ns
$t_{\text {HD }}$	Data Hold from Write End	2		2		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low Z	0		0		ns
thzwE	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$	0	15	0	15	ns

Switching Waveforms

Read Cycle No. $1^{[8,9]}$

Read Cycle No. $2^{[8,10]}$

Notes:
8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{L}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with CS transition LOW

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[7]}$

Write Cycle No. 2 ($\overline{\mathrm{CS}}$ Controlled) ${ }^{[7,11]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	
H	X	X	High Z	Mode
L	H	L	Data Out	Reselect/Power-Down
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Note:

11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CYM1841BPM-15C	PM03	64-Pin Plastic SIMM Module	Commercial
	CYM1841BPZ-15C	PZ08	64-Pin Plastic ZIP Module	
	CYM1841BP7-15C	PM50	72-Pin Plastic SIMM Module	
20	CYM1841BPM-20C	PM03	64-Pin Plastic SIMM Module	Commercial
	CYM1841BPZ-20C	PZ08	64-Pin Plastic ZIP Module	
	CYM1841BP7-20C	PM50	72-Pin Plastic SIMM Module	
25	CYM1841BPM-25C	PM03	64-Pin Plastic SIMM Module	Commercial
	CYM1841BPZ-25C	PZ08	64-Pin Plastic ZIP Module	
	CYM1841BP7-25C	PM50	72-Pin Plastic SIMM Module	
35	CYM1841BPM-35C	PM03	64-Pin Plastic SIMM Module	Commercial
	CYM1841BPZ-35C	PZ08	64-Pin Plastic ZIP Module	
	CYM1841BP7-35C	PM50	72-Pin Plastic SIMM Module	
45	CYM1841BPM-45C	PM03	64-Pin Plastic SIMM Module	Commercial
	CYM1841BPZ-45C	PZ08	64-Pin Plastic ZIP Module	
	CYM1841BP7-45C	PM50	72-Pin Plastic SIMM Module	

Package Diagrams

64-Pin ZIP Module - PZ08

64-Pin Plastic SIMM Module - PM03

72-Pin Plastic SIMM Module - PM50

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CYM1841B 256K x 32 Static RAM Module Document Number: 38-05261				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
${ }^{* *}$	114352	$3 / 22 / 02$	DSG	Change from Spec number: 38-M-00031 to 38-05261
${ }^{*}$ A	125739	$04 / 28 / 03$	CS	Changed lix and loz unit to uA from mA and amended incorrected values shown on pages 2, 3 and 4.

[^0]: 1. A pull-up resistor to $V_{C C}$ on the $\overline{C S}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
 2. Tested on a sample basis.
 3. 20 pF on $\mathrm{CS}, 70 \mathrm{pF}$ all others.
