$512 \mathrm{~K} \times 24$ Static RAM

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=8,10,12 \mathrm{~ns}$
- Low active power
- 1080 mW (max.)
- Operating voltages of $2.5 \pm 0.2 \mathrm{~V}$
- 1.5 V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathrm{CE}}_{0}, \overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ features

Functional Description

The CY7C1012AV25 is a high-performance CMOS static RAM organized as 512 K words by 24 bits. Each data byte is separately controlled by the individual chip selects $\left(\mathrm{CE}_{0}, \mathrm{CE}_{1}\right.$, CE_{2}). CE_{0} controls the data on the $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$, while CE_{1} controls the data on $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$, and CE_{2} controls the data on the data pins $\mathrm{I} / \mathrm{O}_{16}-\mathrm{l} / \mathrm{O}_{23}$. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing the data bytes into the SRAM is accomplished when the chip select controlling that byte is LOW and the write enable input (WE) input is LOW. Data on the respective input/output (I/O) pins is then written into the location specified on the address pins $\left(\mathrm{A}_{0}-\mathrm{A}_{16}\right)$. Asserting all of the chip selects LOW and write enable LOW will write all 24 bits of data into the SRAM. Output enable ($\overline{\mathrm{OE}}$) is ignored while in WRITE mode.
Data bytes can also be individually read from the device. Reading a byte is accomplished when the chip select controlling that byte is LOW and write enable (WE) HIGH while output enable (OE) remains LOW. Under these conditions, the contents of the memory location specified on the address pins will appear on the specified data input/output (I/O) pins Asserting all the chip selects LOW will read all 24 bits of data from the SRAM.

The $24 \mathrm{I} / \mathrm{O}$ pins ($\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{23}$) are placed in a high-impedance state when all the chip selects are HIGH or when the output enable (OE) is HIGH during a READ mode. For further details, refer to the truth table of this data sheet.

The CY7C1012AV25 is available in a standard 119-ball BGA.

Functional Block Diagram

Selection Guide

		$\mathbf{- 8}$	$\mathbf{- 1 0}$	$\mathbf{- 1 2}$	Unit
Maximum Access Time		8	10	12	ns
Maximum Operating Current	Commercial	300	275	260	mA
	Industrial	300	275	260	
Maximum CMOS Standby Current	Commercial/Industrial	50	50	50	mA

Pin Configurations

119 BGA
Top View

	1	2	3	4	5	6	7
A	NC	A	A	A	A	A	NC
B	NC	A	A	$\overline{\mathrm{CEO}}$	A	A	NC
C	$1 / O_{12}$	NC	$\overline{\mathrm{CE}}$	NC	$\overline{\mathrm{CE} 2}$	NC	$1 / \mathrm{O}_{0}$
D	$1 / O_{13}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	$1 / \mathrm{O}_{1}$
E	$\mathrm{l} / \mathrm{O}_{14}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	V_{SS}	V_{DD}	$\mathrm{V}_{\text {SS }}$	$1 / \mathrm{O}_{2}$
F	$\mathrm{l} / \mathrm{O}_{15}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{\text {DD }}$	$1 / \mathrm{O}_{3}$
G	$1 / \mathrm{O}_{16}$	$\mathrm{V}_{\text {SS }}$	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	$1 / \mathrm{O}_{4}$
H	$\mathrm{l} / \mathrm{O}_{17}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{\text {DD }}$	$1 / \mathrm{O}_{5}$
J	NC	$\mathrm{V}_{\text {SS }}$	$V_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	DNU
K	$1 / O_{18}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	$1 / \mathrm{O}_{6}$
L	$\mathrm{l} / \mathrm{O}_{19}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	$1 / \mathrm{O}_{7}$
M	$1 / \mathrm{O}_{20}$	V_{DD}	$\mathrm{V}_{\text {SS }}$	V_{SS}	$\mathrm{V}_{\text {SS }}$	$V_{\text {DD }}$	$1 / \mathrm{O}_{8}$
N	$1 / \mathrm{O}_{21}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	V_{SS}	V_{DD}	$\mathrm{V}_{\text {SS }}$	I/O9
P	$1 / \mathrm{O}_{22}$	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{\text {D }}$	$1 / O_{10}$
R	$1 / \mathrm{O}_{23}$	A	NC	NC	NC	A	$1 / O_{11}$
T	NC	A	A	$\overline{\text { WE }}$	A	A	NC
U	NC	A	A	$\overline{\mathrm{OE}}$	A	A	NC

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied. \qquad .$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[1]} \ldots .-0.5 \mathrm{~V}$ to +3.6 V DC Voltage Applied to Outputs
in High-Z State ${ }^{[1]}$. \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW)... 20 mA
Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

DC Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions ${ }^{[2]}$		-8		-10		-12		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \end{aligned}$		2.0		2.0		2.0		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{LL}}=1.0 \mathrm{~mA} \end{aligned}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.0	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	V
$\mathrm{V}_{\mathrm{IL}}{ }^{\text {[1] }}$	Input LOW Voltage			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$, Output Disabled		-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
ICC	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Commercial		300		275		260	mA
			Industrial		300		275		260	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-down Current -TTL Inputs	$\begin{aligned} & \text { Max. } V_{C C}, C E \geq V_{I H} \\ & V_{I N} \geq V_{I H} \text { or } \\ & V_{I N} \leq V_{I L}, f=f_{M A X} \\ & \hline \end{aligned}$			100		100		100	mA
$I_{\text {SB2 }}$	Automatic CE Power-down Current -CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \\ & C E \geq V_{C C}-0.2 V \\ & V_{I N} \geq V_{C C}-0.2 V \\ & \text { or } V_{I N} \leq 0.2 V, f=0 \end{aligned}$	Commercial /Industrial		50		50		50	mA

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	8	pF
		10	pF	

Notes:

1. $\quad \mathrm{V}_{\mathrm{I}}$ (min.) $=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. $\overline{\mathrm{CE}}$ refers to a combination of $\overline{\mathrm{CE}}_{0}, \overline{\mathrm{CE}}_{1}$, and $\overline{\mathrm{CE}}_{2}$. $\overline{\mathrm{CE}}$ is active LOW when all three of these signals are active LOW at the same time.
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms ${ }^{[4]}$

(a)
(c)

AC Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	-8		-10		-12		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle								
$\mathrm{t}_{\text {power }}{ }^{[6]}$	V_{CC} (typical) to the first access	1		1		1		ms
t_{RC}	Read Cycle Time	8		10		12		ns
t_{AA}	Address to Data Valid		8		10		12	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, and $\overline{\mathrm{CE}}_{3}$ LOW to Data Valid		8		10		12	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		5		5		6	ns
t LZOE	$\overline{\text { OE LOW }}$ to Low ${ }^{[7]}$	1		1		1		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7]}$		5		5		6	ns
t LZCE	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, and $\overline{\mathrm{CE}}_{3}$ LOW to Low ${ }^{[7]}$	3		3		3		ns
$t_{\text {HZCE }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{CE}}_{3}$ HIGH to High $\mathrm{Z}^{[7]}$		5		5		6	ns
t_{PU}	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, and $\overline{\mathrm{CE}}_{3}$ LOW to Power-up ${ }^{[8]}$	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{CE}}_{3} \mathrm{HIGH}$ to Power-down ${ }^{[8]}$		8		10		12	ns
$\mathrm{t}_{\text {DBE }}$	Byte Enable to Data Valid		5		5		6	ns
tlzbe	Byte Enable to Low ${ }^{[7]}$	1		1		1		ns
$t_{\text {HZBE }}$	Byte Disable to High $\mathrm{Z}^{[7]}$		5		5		6	ns
Write Cycle ${ }^{[9,10]}$								
t_{wc}	Write Cycle Time	8		10		12		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, and $\overline{\mathrm{CE}}_{3}$ LOW to Write End	6		7		8		ns

Notes:

4. Valid SRAM operation does not occur until the power supplies have reached the minimum operating $V_{D D}(2.3 V)$. As soon as 1 ms ($T_{\text {power }}$) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention ($\mathrm{V}_{\mathrm{CCDR}}, 1.5 \mathrm{~V}$) voltage.
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.1 V , input pulse levels of 0 to 2.3 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and transmission line loads. Test conditions for the read cycle use output loading as shown in part a) of the AC test loads, unless specified otherwise.
6. This part has a voltage regulator which steps down the voltage from 3 V to 2 V internally. $\mathrm{t}_{\text {power }}$ time has to be provided initially before a read/write operation is started.
7. $\mathrm{t}_{\text {HZOE }}, \mathrm{t}_{\text {HZCE }}, \mathrm{t}_{\text {HZWE }}, \mathrm{t}_{\text {HZBE }}$, and $\mathrm{t}_{\text {LZOE }}, \mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\text {LZWE }}, \mathrm{t}_{\text {LZBE }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage.
8. These parameters are guaranteed by design and are not tested.
9. The internal write time of the memory is defined by the overlap of $\overline{C E}_{1}, \overline{C E}_{2}$, and $\overline{C E}_{3}$ LOW and $\overline{W E}$ LOW. The chip enables must be active and $\overline{W E}$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{W E}$ controlled, $\overline{O E}$ LOW) is the sum of $t_{H Z W E}$ and $t_{S D}$.

AC Switching Characteristics Over the Operating Range (continued) ${ }^{[5]}$

Parameter	Description	-8		-10		-12		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {AW }}$	Address Set-Up to Write End	6		7		8		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	6		7		8		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		5.5		6		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[7]}$		5		5		6	ns
t_{BW}	Byte Enable to End of Write	6		7		8		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No. ${ }^{[11,12]}$

Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[2,12,13]}$

Notes:

11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. WE is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[2,14,15]}$

Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[14,15]}$

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) $)^{[2,15]}$

14. Data I / O is high impedance if $O E=V_{\mathrm{HE}}$.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
16. During this period the I/Os are in the output state and input signals should not be applied.

Truth Table

$\overline{\mathrm{CE}}_{0}$	$\overline{C E}_{1}$	$\overline{C E}_{2}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{23}$	Mode	Power
H	H	H	X	X	High-Z	Power-down	Standby (${ }_{\text {SBB }}$)
L	H	H	L	H	$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$ Data Out	Read	Active ($\mathrm{ICCO}^{\text {) }}$
H	L	H	L	H	$1 / \mathrm{O}_{8}-1 / \mathrm{O}_{15}$ Data Out	Read	Active ($\mathrm{ICC}^{\text {) }}$
H	H	L	L	H	$1 / \mathrm{O}_{16}-1 / \mathrm{O}_{23}$ Data Out	Read	Active ($\mathrm{ICC}^{\text {) }}$
L	L	L	L	H	Full Data Out	Read	Active (ICC)
L	H	H	X	L	$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$ Data In	Write	Active ($\mathrm{ICCO}^{\text {) }}$
H	L	H	X	L	$1 / \mathrm{O}_{8}-1 / \mathrm{O}_{15}$ Data In	Write	Active ($\mathrm{ICC}^{\text {) }}$
H	H	L	X	L	$1 / \mathrm{O}_{16}-1 / \mathrm{O}_{23}$ Data In	Write	Active ($\mathrm{ICCO}^{\text {) }}$
L	L	L	X	L	Full Data In	Write	Active ($\mathrm{lcC}^{\text {) }}$
L	L	L	H	H	High-Z	Selected, Outputs Disabled	Active (ICC)

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
8	CY7C1012AV25-8BGC	BG119	$14 \times 22 \mathrm{~mm} 119$-ball BGA	Commercial
	CY7C1012AV25-8BGI			Industrial
10	CY7C1012AV25-10BGC			Commercial
	CY7C1012AV25-10BGI			Industrial
12	CY7C1012AV25-12BGC			Commercial
	CY7C1012AV25-12BGI			Industrial

Package Diagram

119-lead PBGA (14 x $22 \times 2.4 \mathrm{~mm}$) BG119

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1012AV25 512K x 24 Static RAM
Document Number: 38-05337

REV.	ECN NO.	Issue Date	Orig. of Change	
${ }^{*}$	119630	$01 / 29 / 03$	DFP	New Data Sheet

