
Warp Enterprise™ VHDL CPLD Software

CY3130

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
Document #: 38-03050 Rev. *A Revised January 9, 2002

0

Features
• VHDL (IEEE 1076 and 1164) high-level language com-

pilers with the following features:
— Designs are portable across multiple devices

and/or EDA environments

— Facilitates the use of industry-standard simulation
and synthesis tools for board- and system-level de-
sign

— Support for functions and libraries facilitating
modular design methodology

— Support for enumerated types, operator overload-
ing, For... Generate statements and Integers

• Several design entry methods support high-level and
low-level design descriptions:
— Graphical HDL Block Diagram editor with a library of

blocks and a text-to-block conversion utility from
Aldec

— Aldec Active-HDL™ FSM graphical Finite State
Machine editor

— Behavioral VHDL (IF...THEN...ELSE; CASE...)

— Boolean

— Structural VHDL

— Designs can include multiple entry methods (but
only one HDL) in a single design.

• Language Assistant library of VHDL templates
• Flow Manager Interface to keep track of complex

projects
• UltraGen™ Synthesis and Fitting Technology:

— Infers “modules” such as adders, comparators, etc.,
from behavioral descriptions and replaces them with
circuits pre-optimized for the target device.

— User-selectable speed and/or area optimization on a
block-by-block basis

— Perfectly integrated synthesis and fitting

— Automatic selection of optimal flip-flop type
(D type/T type)

— Automatic pin assignment
• Support for all Cypress Programmable Logic Devices

— PSI™ (Programmable Serial Interface™)

— Delta39K™ CPLDs

— Quantum38K™ CPLDs

— Ultra37000™ CPLDs

— FLASH370i™ CPLDs

— MAX340™ CPLDs

— Industry standard PLDs (16V8, 20V8, 22V10)

• VHDL or Verilog timing model output for use with
third-party simulators

• Timing simulation provided by Active-HDL™ Sim
Release 4.1 from Aldec
— Graphical waveform simulator

— Graphical entry and modification of all waveforms

— Ability to compare waveforms and highlight differ-
ences before and after a design change

— Ability to probe internal nodes

— Display of inputs, outputs, and high-impedance (Z)
signals in different colors

— Automatic clock and pulse creation

— Support for buses

— Unlimited simulation time
• Architecture Explorer and Dynamic Timing Simulator

for PSI, Delta39K and Quantum38K devices:
— Graphical representation of exactly how your design

will be implemented on your specific target device

— Zoom from the device level down to the macrocell
level

— Determine the timing for any path and view that path
on a graphical representation of the chip

• Static Timing Report for all devices
• Source-Level Behavioral Simulation and Debugger

from Aldec
• Testbench Generation
• UltraISR Programming Cable
• Delta39K\Ultra37000 prototype board with a CY37256V

160-pin TQFP device and a CY39100V 208-pin PQFP
device[1]

• On-line documentation and help

Functional Description
Warp Enterprise™ is an integration of the Warp Profession-
al™ CPLD Development package with additional sophisticat-
ed EDA software features from Aldec. In addition to accepting
IEEE 1076/1164 VHDL text and graphical finite state machines
for design entry, Warp Enterprise VHDL provides a graphical
HDL block diagram editor with a library of graphical HDL
blocks pre-optimized for Cypress devices. Plus, it provides a
utility to convert HDL text into graphical HDL blocks. Warp
Enterprise synthesizes and optimizes the entered design, and
outputs a JEDEC or Intel hex file for the desired PLD or CPLD
(see Figure 1). For simulation, Warp Enterprise provides a tim-
ing simulator, a source-level behavioral simulator, as well as
VHDL and Verilog timing models for use with third party simu-
lators. Warp Enterprise also provides the designer with impor-
tant productivity tools such as a testbench generation wizard
and the Architecture Explorer graphical analysis tool.

Note:
1. Cypress reserves the right to substitute prototype boards based on product availability.

CY3130

Document #: 38-03050 Rev. *A Page 2 of 7

VHDL Compiler

VHDL is a powerful, industry-standard language for behavioral
design entry and simulation, and is supported by all major ven-
dors of EDA tools. It allows designers to learn a single lan-
guage that is useful for all facets of the design process.

VHDL offers designers the ability to describe designs at many
different levels. At the highest level, designs can be entered
as a description of their behavior. This behavioral description
is not tied to any specific target device. As a result, simulation
can be done very early in the design to verify correct function-
ality, which significantly speeds the design process.

The Warp syntax for VHDL includes support for intermediate
level entry modes such as state tables and Boolean entry. At
the lowest level, designs can be described using gate-level
descriptions. Warp Enterprise gives the designer the flexibility
to intermix all of these entry modes.

In addition, VHDL allows you to design hierarchically, building
up entities in terms of other entities. This feature allows you to
work either “top-down” (designing the highest levels of the sys-
tem and its interfaces first, then progressing to greater and
greater detail) or “bottom-up” (designing elementary building
blocks of the system, then combining these to build larger and
larger parts) with equal ease.

Because this language is an IEEE standard, multiple vendors
offer tools for design entry and simulation at both high and low
levels and synthesis of designs to different silicon targets. The
use of device-independent behavioral design entry gives
users the freedom to easily migrate to high volume technolo-
gies. The wide availability of VHDL tools provides complete
vendor independence as well. Designers can begin their
project using Warp Enterprise for Cypress CPLDs and con-
vert to high-volume ASICs using the same VHDL behavioral
description with industry-standard synthesis tools.

The VHDL language also allows users to define their own
functions. User-defined functions allow users to extend the
capabilities of the language and build reusable files of tested
routines. VHDL provides control over the timing of events or
processes. It has constructs that identify processes as either
sequential, concurrent, or a combination of both. This feature
is essential when describing the interaction of complex state
machines.

VHDL is a rich programming language. Its flexibility reflects the
nature of modern digital systems and allows designers to cre-
ate accurate models of digital designs. Because it is not a ver-
bose language it is easy to learn and compile. In addition,
models created in VHDL can readily be transported to other
EDA Environments. Warp Enterprise VHDL supports IEEE
1076/1164 VHDL including loops, for/generate statements,
full hierarchical designs with packages, enumerated types,
and integers.

A VHDL Design Example

Design Entry

Warp Enterprise descriptions specify:
• The behavior or structure of a design, and
• The mapping of signals in a design to the pins of a

PLD/CPLD (optional)
The part of a Warp Enterprise description that specifies the
behavior or structure of the design is called an entity/archi-
tecture pair. Entity/architecture pairs, as their name implies,
are divided into two parts: an entity declaration, which de-
clares the design’s interface signals (i.e., defines what ex-
ternal signals the design has, and what their directions and
types are), and a design architecture, which describes the
design’s behavior or structure.

The entity portion of a design file is a declaration of what a
design presents to the outside world (the interface). For each
external signal, the entity declaration specifies a signal name,
a direction and a data type. In addition, the entity declaration
specifies a name by which the entity can be referenced in a
design architecture. This section shows code segments from
five sample design files. The top portion of each example
features the entity declaration.

Behavioral Description

The architecture portion of a design file specifies the function
of the design. As shown in Figure 1, multiple design-entry
methods are supported in Warp Enterprise. A behavioral
description in VHDL often includes well known constructs
such as If...Then...Else, and Case statements. Here is a
code segment from a simple state machine design (soda
vending machine) that uses behavioral VHDL to implement
the design:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY drink IS
PORT (nickel,dime,quarter,clock:#in

std_logic;
returnDime,returnNickel,giveDrink:out

std_logic);
END drink;

Figure 1. Warp® Design Flow

D
E

S
IG

N
E

N
T

R
Y

C
O

M
P

IL
A

T
IO

N

State MachineVHDL

Programming Timing
Simulator

VHDL, Verilog
&Third-Party

Simulation Models

V
E

R
F

IC
A

T
IO

N

UltraGen™
Synthesis

and
Fitting

Graphical

File

text HDL Blocks

Source-Level
Simulation

CY3130

Document #: 38-03050 Rev. *A Page 3 of 7

ARCHITECTURE fsm OF drink IS

TYPE drinkState IS (zero,five,ten,fifteen,
twenty,twentyfive,owedime);
SIGNAL drinkstatus:drinkState;

BEGIN

PROCESS BEGIN

WAIT UNTIL clock = ’1’;

giveDrink <= ’0’;
returnDime <= ’0’;
returnNickel <= ’0’;

CASE drinkStatus IS

WHEN zero =>

IF (nickel = ’1’) THEN
drinkStatus <= five;

ELSIF (dime = ’1’) THEN
drinkStatus <= Ten;

 ELSIF (quarter = ’1’) THEN
drinkStatus <= twentyfive;

END IF;
WHEN five =>

IF (nickel = ’1’) THEN
drinkStatus <= ten;

ELSIF (dime = ’1’) THEN
drinkStatus <= fifteen;

ELSIF (quarter = ’1’) THEN
giveDrink <= ’1’;
drinkStatus <= zero

END IF;

-- Several states are omitted in this
-- example. The omitted states are ten,
-- fifteen, twenty, and twentyfive.

WHEN owedime =>
returnDime <= ’1’;
drinkStatus <= zero;

when others =>
-- This makes sure that the state
-- machine resets itself if
-- it somehow gets into an undefined state.

drinkStatus <= zero;
END CASE;
END PROCESS;

END FSM;

VHDL is a strongly typed language. It comes with several
predefined operators, such as + and /= (add, not-equal-to).
VHDL offers the capability of defining multiple meanings for
operators (such as +), which results in simplification of the
code written. For example, the following code segment shows
that “count <= count +1” can be written such that count is a
std_logic_vector, and 1 is an integer.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.std_arith.all;

ENTITY sequence IS
port (clk: in std_logic;
s : inout std_logic);

end sequence;

ARCHITECTURE fsm OF sequence IS

SIGNAL count: std_logic_vector(3 downto 0);

BEGIN

PROCESS BEGIN

WAIT UNTIL clk = ’1’;

CASE count IS

WHEN x“0” | x“1” | x“2” | x“3” =>
s <= ’1’;
count <= count + 1;

WHEN x“4” | x“5” | x“6” | x“7” =>
s <= ’0’;
count <= count + 1;

WHEN x“8” | x“9” =>
s <= ’1’;
count <= count + 1;

WHEN others =>
s <= ’0’;
count <= (others => ’0’);

END CASE;

END PROCESS;

END FSM;

In this example, the + operator is overloaded to accept both
integer and std_logic arguments. Warp Enterprise supports
overloading of operators.

Functions

A major advantage of VHDL is the ability to implement func-
tions. The support of functions allows designs to be reused by
simply specifying a function and passing the appropriate
parameters. Warp Enterprise features some built-in func-
tions such as ttf (truth-table function). The ttf function is
particularly useful for state machine or look-up table de-
signs. The following code describes a seven-segment dis-
play decoder implemented with the ttf function:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.table_std.all;

ENTITY seg7 IS
PORT(
inputs: IN STD_LOGIC_VECTOR (0 to 3)
outputs: OUT STD_LOGIC_VECTOR (0 to 6)

);
END SEG7;

ARCHITECTURE mixed OF seg7 IS

CONSTANT truthTable:
ttf_table (0 to 11, 0 to 10) := (

-- input& output
-- -----------------------
”0000”& ”0111111”,

CY3130

Document #: 38-03050 Rev. *A Page 4 of 7

”0001”& ”0000110”,
”0010”& ”1011011”,
”0011”& ”1001111”,
”0100”& ”1100110”,
”0101”& ”1101101”,
”0110”& ”1111101”,
”0111”& ”0000111”,
”1000”& ”1111111”,
”1001”& ”1101111”,
”101-”& ”1111100”, --creates E pattern
”111-”& ”1111100”
);

BEGIN

outputs <= ttf(truthTable,inputs);

END mixed;

Boolean Equations

A third design-entry method available to Warp Enterprise users
is Boolean equations. Figure 2 displays a schematic of a simple
one-bit half adder. The following code describes how this one-bit half
adder can be implemented in Warp Enterprise with Boolean equa-
tions:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

--entity declaration
ENTITY half_adder IS

PORT (x, y: IN std_logic;
sum, carry : OUT std_logic);

END half_adder;
--architecture body
ARCHITECTURE behave OF half_adder IS
BEGIN

sum <= x XOR y;
carry <= x AND y;

END behave;

Structural VHDL

While all of the design methodologies described thus far are
high-level entry methods, structural VHDL provides a method
for designing at a very low level. In structural descriptions, the
designer simply lists the components that make up the design
and specifies how the components are wired together.
Figure 3 displays the schematic of a simple 3-bit shift register and
the following code shows how this design can be described in
Warp Enterprise using structural VHDL:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.rtlpkg.all;

ENTITY shifter3 IS port (
clk : IN STD_LOGIC;
x : IN STD_LOGIC;
q0 : OUT STD_LOGIC;
q1 : OUT STD_LOGIC;
q2 : OUT STD_LOGIC);

END shifter3;

ARCHITECTURE struct OF shifter3 IS
SIGNAL q0_temp, q1_temp, q2_temp : STD_LOGIC;
BEGIN
d1 : DFF PORT MAP(x,clk,q0_temp);
d2 : DFF PORT MAP(q0_temp,clk,q1_temp);
d3 : DFF PORT MAP(q1_temp,clk,q2_temp);
q0 <= q0_temp;
q1 <= q1_temp;
q2 <= q2_temp;

END struct;

All of the design-entry methods described can be mixed as
desired. VHDL has the ability to combine both high- and
low-level entry methods in a single file. The flexibility and
power of VHDL allows users of Warp Enterprise to describe
designs using whatever method is appropriate for their particular
design.

Finite State Machine Editor
Aldec’s Active-HDL FSM finite state machine editor, allows
graphic design entry through the use of graphical state dia-
grams. A design may be represented graphically using state
diagrams and data flow logic. This tool will automatically
generate the HDL code of the design.

HDL Block Diagram Editor
The HDL block diagram editor lets you represent portions of
your code with graphical symbols. This representation allows
you to view the high-level structure of your complex designs
and lets you copy and paste entire modules of your design
within or between designs. The editor comes with a library of
HDL blocks optimized for Cypress devices. Warp Enterprise
comes with a utility that converts HDL text into these blocks.

Language Assistant
The language assistant is a library of language templates that
you can browse and automatically insert into your HDL text.
They provide syntax and structure and give examples to aid
users who are new using a particular HDL.

Flow Manager
The flow manager is a special interface that helps you keep
track of your complex projects. It arranges the tools as part of

Figure 2. One-Bit Half Adder

x
y

carry

sum

1

Figure 3. Three-Bit Shift Register Circuit Design

clk

d q

clk

d q

clk

d qx

clk

q0 q1 q2

CY3130

Document #: 38-03050 Rev. *A Page 5 of 7

the logical flow the designer takes through a project and re-
members what steps have been completed on which designs.

Source-Level Simulation
Warp Enterprise’s source-level behavioral simulator helps you
catch problems with your code early in the design process by
letting you simulate a design before synthesis. The tool lets
you graphically watch inputs and outputs, gives you timing in-
formation and allows you to step through your code line by line.

Compilation
Once the VHDL description of the design is complete, it is
compiled using Warp Enterprise. Although implementation is with
a single command, compilation is actually a multistep process, as
shown in Figure 1.

The first part of the compilation process is the same for all
devices. The input description is synthesized to a logical rep-
resentation of the design. Warp synthesis is unique in that the
input languages support device-independent design
descriptions. Competing programmable logic compilers re-
quire very specific and device-dependent information in the
design description. Warp synthesis is based on UltraGen tech-
nology that allows Warp Enterprise to infer adders, subtrac-
tors, multipliers, comparators, counters and shifters from the
behavioral descriptions. Warp Enterprise then replaces these
operators internally with an architecture-specific circuit. This
circuit or “module” is also pre-optimized for either area or
speed. Warp Enterprise uses the appropriate implementation
based on user directives.

The second step of compilation is an iterative process of opti-
mizing the design and fitting the logic into the targeted device.
Logical optimization in Warp Enterprise is accomplished using
Espresso algorithms. The optimized design is automatically fed to
the Warp Enterprise fitter for targeting a PLD or CPLD. This fitter
supports the automatic or manual placement of pin assignments as
well as automatic selection of D or T flip-flops. After optimization and
fitting, Warp Enterprise creates a JEDEC or Intel hex file for the
specified PLD or CPLD.

Automatic Error Tracking
Warp Enterprise features automatic error location that allows
problems to be diagnosed and corrected in seconds. Errors
from compilation are displayed immediately in a window. If the
user highlights a particular error, Warp Enterprise will automat-
ically open the source code file and highlight the offending line
in the entered design. If the device fitting process includes
errors, a window will again describe them. A detailed report file
is generated indicating the resources required to fit the input
design and any problems that occurred in the process.

Timing Simulation
The Aldec Active-HDL Sim post-fitting timing simulator pro-
vides timing simulation for PLDs/CPLDs and features interac-
tive waveform viewing as well as graphical creation and editing
of all waveforms. The simulator also provides the ability to
probe internal nodes, and automatically generate clocks and
pulses. The version in Warp Enterprise has the ability to com-
pare waveforms and highlight differences before and after a

design change. Warp Enterprise has unlimited simulation
time. To use the timing simulator in Warp Enterprise VHDL you
must use a VHDL netlist.

Warp Enterprise VHDL will also output standard VHDL timing
models. These models can be used with all third-party
simulators to perform functional and timing verifications of the
synthesized design.

Architecture Explorer
The Architecture Explorer graphically displays how the design
will be implemented on the chip. It provides a view of the entire
device to show what memory elements and logic clusters have
been used for what part of the design. This gives the designer
an idea of what resources are free. The Architecture Explorer
allows you to zoom in multiple times. At maximum zoom it
displays the logic gate implementation in each macrocell. The
Architecture Explorer is available for PSI, Delta39K, and
Quantum38K devices.

Timing Analyzer
The Timing Analyzer gives the time across any path as well as
the breakdown of what steps are causing the timing delays.
This tool does not simply display the general specification for
the target device but a worst-case simulation of the actual path
being taken through the device. When you highlight a path on
the timing analyzer, the source and destination of that path are
displayed on the Architecture Explorer. The timing analyzer
graphical interface is available for PSI, Delta39K, and
Quantum38K devices.

Programming
Cypress’s FLASH370i, Ultra37000, Quantum38K and Delta39K
In-System Reprogrammable™ (ISR™) devices can be pro-
grammed on board with an ISR programmer. For PSI,
Delta39K, and Quantum38K devices, Warp Enterprise pro-
duces an Intel hex file. The ISR programmer converts this file
into STAPL and programs the device. For Ultra37000 and
FLASH370i devices, Warp Enterprise produces a JEDEC file.
For Ultra37000, the ISR programmer converts this file into
JAM/STAPL and programs the device. For FLASH370i, the JE-
DEC file is used directly to program the device.

Warp Enterprise comes with an UltraISR Programming Cable
and a Delta39K\Ultra37000 prototype board with a CY37256V
160-pin TQFP device and a CY39100V 208-pin device.[1]

The JEDEC and Intel hex files produced by Warp Enterprise
can also be used with any qualified third party programmer to
program Cypress CPLDs.

For more information on Cypress’s ISR software see the ISR
Programming Kit (CY3900i) data sheet.

Warp Software System Requirements
• IBM PC or equivalent (Pentium® class recommended)
• 32 MB of RAM (64 Mbytes recommended)
• 110 MB Disk Space
• CD-ROM drive
• Windows 98, or Windows NT 4.0
• Warp Enterprise for VHDL Hardware Key

CY3130

Document #: 38-03050 Rev. *A Page 6 of 7
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

ISR Software PC System Requirements
• IBM PC or compatible running Windows 98, Windows 98

Second Edition, Windows ME, Windows NT 4.0 Service
Pack 5 or later, or Windows 2000 Service Pack 1 or later

• One free parallel port
• Minimum of 32 MB of RAM
• Approximately 30 MB free hard disk space

Product Ordering Information

Warp Enterprise includes:
• Cypress Lab CD-ROM with Warp Enterprise, ISR software,

on-line documentation (Getting Started Manual, User’s
Guide, HDL Reference Manual, Data Book) and other
Cypress software

• UltraISR Programming Cable
• Delta39K\Ultra37000 prototype board with a CY37256V

160-pin TQFP device and a CY39100V 208-pin device[1]

• VHDL for Programmable Logic textbook
• Registration Card
• Hardware License Key

Warp Professional, Warp Enterprise, UltraGen, Ultra37000, Quantum38K, Delta39K, PSI, Programmable Serial Interface,
MAX340, ISR, In-System Reprogrammable, and FLASH370i are trademarks of Cypress Semiconductor Corporation.
Warp is a registered trademark of Cypress Semiconductor Corporation.
Pentium is a registered trademark of Intel Corporation.
Windows 98, Windows 2000 and Windows NT are trademarks of Microsoft Corporation.
Solaris is a trademark of Sun Microsystems Corporation.
Active-HDL is a trademark of Aldec.

Product Code Description

CY3130R62 Warp Enterprise VHDL CPLD software for
PCs

CY3130

Document #: 38-03050 Rev. *A Page 7 of 7

Document Title: CY3130 Warp Enterprise™ VHDL CPLD Software
Document Number: 38-03050

REV. ECN NO.
Issue
Date

Orig. of
Change Description of Change

** 109969 10/24/01 SZV Change from Spec number: 38-00242 to 38-03050

*A 111245 01/21/02 CNH Update Product Code and remove references to Windows95

