

Features

- ANSI TIA/EIA-644-1995-compliant
- Designed for data rates to $\geq 650 \mathrm{Mbps}=(325 \mathrm{MHz})$
- Single 2×2 with high-drive output drivers
—Low-voltage Differential Signaling with output
voltages of $\pm 350 \mathrm{mV}$ into 50 -ohm load version (Bus LVDS)
- Single 3.3V supply
- Accepts $\pm 350-\mathrm{mV}$ differential inputs
- Output drivers are high impedance when disabled or when VDD $\leq 1.5 \mathrm{~V}$
- 28-pin SSOP/TSSOP packages
- Industrial version available

Description

The Cypress CY2LL8423 are differential line drivers and receivers that utilize low-voltage differential signaling (LVDS) to achieve signaling rates of 650 Mbps . The receiver outputs can be switched to either or both drivers through the multiplexer control signals S2/S3. This provides flexibility in application for either a splitter or router configuration with a single device.

The Cypress CY2LL8423 are configured as a dual 2-channel repeater/Mux. The LVDS standard provides a minimum differential output voltage of 247 mV into a 50 -ohm load and receipt of as little as $100-\mathrm{mV}$ signals with up to 1V of DC offset between transmitter and receiver.
A doubly-terminated Bus LVDS line enables multipoint configurations.
Designed for both point-to-point based-B and multipoint data transmission over controlled impedance lines.

Block Diagram

Pin Configuration

Pin Description

Pin Number	Pin Name	Description
15,22	GND	Ground
2,1	$1 \mathrm{~A}, 1 \mathrm{~B}$	Differential Input Channel 1
3	S0	Function Select Channel 1\&2
4	1 DE	Data Enable Channel 1
5	S1	Function Select Channel 1\& 2
6,7	$2 \mathrm{~A}, 2 \mathrm{~B}$	Differential Input Channel 2
21,28	VDD	Power Supply
8,9	$3 \mathrm{~A}, 3 \mathrm{~B}$	Differential Input Channel 3
10	S 2	Function Select Channel 3 \& 4
11	3 DE	Data Enable Channel 3
12	$\mathrm{S3}$	Function Select Channel 3 \& 4
13,14	$4 \mathrm{~A}, 4 \mathrm{~B}$	Differential Input Channel 4
17,16	$4 \mathrm{Y}, 4 \mathrm{Z}$	Differential Output Channel 4
18	4 DE	Data Enable Channel 4
20,19	$3 \mathrm{Y}, 3 \mathrm{Z}$	Differential Output Channel 3
23,24	$2 \mathrm{Y}, 2 \mathrm{Z}$	Differential Output Channel 2
25	2 DE	Data Enable Channel 2
27,26	$1 \mathrm{Y}, 1 \mathrm{Z}$	Differential Output Channel 1

Table 1. Mux Function Table

Input		Output		Function
$\mathbf{S 0}$	$\mathbf{S 1}$	$\mathbf{1 Y / 1 Z}$	$\mathbf{2 Y / 2 Z}$	
0	0	$1 \mathrm{~A} / 1 \mathrm{~B}$	$1 \mathrm{~A} / 1 \mathrm{~B}$	Splitter A
1	0	$2 \mathrm{~A} / 2 \mathrm{~B}$	$2 \mathrm{~A} / 2 \mathrm{~B}$	Splitter B
0	1	$1 \mathrm{~A} / 1 \mathrm{~B}$	$2 \mathrm{~A} / 2 \mathrm{~B}$	Pass Thru Router
1	1	$2 \mathrm{~A} / 2 \mathrm{~B}$	$\mathbf{1 A} / 1 \mathrm{~B}$	Cross Point Router
$\mathbf{S 2}$	$\mathbf{S 3}$	$\mathbf{3 Y / 3 Z}$	$\mathbf{4 Y / 4 Z}$	
0	0	$3 \mathrm{~A} / 3 \mathrm{~B}$	$3 \mathrm{~A} / 3 \mathrm{~B}$	Splitter A
1	0	$4 \mathrm{~A} / 4 \mathrm{~B}$	$4 \mathrm{~A} / 4 \mathrm{~B}$	Splitter B
0	1	$3 \mathrm{~A} / 3 \mathrm{~B}$	$4 \mathrm{~A} / 4 \mathrm{~B}$	Pass Thru Router
1	1	$4 \mathrm{~A} / 4 \mathrm{~B}$	$3 \mathrm{~A} / 3 \mathrm{~B}$	Cross Point Router

Table 2. Absolute Maximum Rating Over Operating Free-Air Temperature ${ }^{[1]}$

Supply Voltage Range, $\mathrm{V}_{\mathrm{DD}}(1)$	-0.5 V to 4 V
Voltage Range (DE,S0,S1)	-0.5 V to 6.0 V
Input Voltage Range, VIN (A or B)	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
ESD (All pins)	Class $3, \mathrm{~A}: 2 \mathrm{KV}, \mathrm{B}: 500 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Note:

1. Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device. This is intended to be a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Table 3. Recommended Operating Conditions ${ }^{[2]}$

Parameter	Description		Min.	Typ.	Max.	Unit
V ${ }^{\text {DD }}$	Supply Voltage		3	3.3	3.6	V
V_{IH}	High Level Input Voltage	(S0,S1,1DE,2DE) (S2,S3,3DE,4DE)	2			
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\begin{aligned} & \text { (S0,S1,1DE,2DE) } \\ & \text { (S2,S3,3DE,4DE) } \end{aligned}$			0.8	
$\mathrm{V}_{\text {ID }}$	Magnitude of Differential Input Voltage		0.1		0.6	
$\mathrm{V}_{\text {IC }}$	Common Mode Input Voltage		$\mathrm{V}_{\mathrm{ID}} / 2$		$2.4-\left(\mathrm{V}_{\mathrm{ID}} / 2\right)$	
T_{A}	Operating Free Air Temperature	Industrial	-40		85	${ }^{\circ} \mathrm{C}$
		Commercial	0		70	

Table 4. Receiver Electrical Characteristics Over Recommended Operating Conditions

Parameter	Description	Condition	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {ITH }+}$	Positive-going Differential Input Voltage Threshold	$\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}$			100	mV
$\mathrm{V}_{\text {ITH- }}$	Negative-going Differential Input Voltage Threshold	$\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}$	-100			mV
1	Input Current (A Inputs) [FAIL SAFE]	$\mathrm{V}_{1}=0 \mathrm{~V}$	-0.5		-10	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2.4 \mathrm{~V}$			-10	$\mu \mathrm{A}$
1	Input Current (B Inputs) [FAIL SAFE]	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	0.5		10	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2.4 \mathrm{~V}$			10	$\mu \mathrm{A}$
1 (Off)	Power Off Current (A or B Inputs)	$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$

Table 5. Receiver Electrical Characteristics Over Recommended Operating Conditions

Parameter	Description	Condition		Min.	Typ.	Max.	Unit
$V_{O D}$	Differential Output Voltage Swing	$\mathrm{RL}=50 \mathrm{Ohm}$	See Figure 3	247	340	454	mV
$\sim \mathrm{V}_{\text {OD }}$	Change in Differential Output Voltage Swing between Logic States			-50		50	mV
V_{OC} (SS)	Steady State Common-mode Output Voltage		See Figure 4	1.125		1.375	V
$\sim \mathrm{V}_{\text {OC }}(\mathrm{SS})$	Change in Steady State Common-mode Output between Logic States			-50	3	50	mV
$\mathrm{V}_{\mathrm{OC}}(\mathrm{PP})$	Peak-to-Peak Common-mode Output Voltage					150	mV
I_{CC}	Supply Current	No load			20	28	mA
		RL = 50 ohm@3.3V Fin $=75 \mathrm{MHz}$			42	54	mA
		Both channels disabled			16	24	mA
I_{IH}	High-Level Input Current	$\begin{aligned} & \text { (S0,S1,1DE,2DE) } \\ & \text { (S2,S3,3DE,4DE) } \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}$		15		$\mu \mathrm{A}$
IL	Low-Level Input Current	$\begin{aligned} & \text { (S0,S1,1DE,2DE) } \\ & \text { (S2,S3,3DE,4DE) } \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$		5		$\mu \mathrm{A}$
los	Short Circuit Current		V_{OY} or $\mathrm{V}_{0 \mathrm{O}}=0 \mathrm{~V}$			20	mA
			$\mathrm{V}_{\mathrm{OD}}=0 \mathrm{~V}$			20	
I_{OZ}	High Impedance Output Current		$\mathrm{V}_{\mathrm{OD}}=600 \mathrm{mV}$		0.1	1	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{DD}		0.1	1	
IO(OFF)	Power-Off Output Current		$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V} 0=3.6 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {in }}$	Input Capacitance		$\begin{aligned} & 1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{~A}, \\ & 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B} \end{aligned}$		3		pF
	Control Input Capacitance		$\begin{aligned} & \text { (S0,S1,1DE,2DE) } \\ & \text { (S2,S3,3DE,4DE) } \end{aligned}$		6		pF

Note:
2. Multiple supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

Table 6. Differential Receiver to Driver Switching Characteristics Over Recommended Operating Conditions ${ }^{[3,4]}$

Parameter	Description	Test Conditions	Min.	Typ. ${ }^{[3]}$	Max.	Unit
$\mathrm{T}_{\text {PLH }}$	Differential Propagation delay, low to high	$\mathrm{CL}=10 \mathrm{pF}$ (see Figure 5 and Figure 6)		4	6	ns
$\mathrm{T}_{\text {PHL }}$	Differential Propagation delay, high to low			4	6	ns
$\mathrm{T}_{\text {sk(p) }}$	Pulse Skew ($\mathrm{T}_{\mathrm{PHL}}-\mathrm{T}_{\mathrm{PLH}}$)			0.2		ns
T_{r}	Transition Low to High				700	ps
T_{f}	Transition High to Low				700	ps
$\mathrm{T}_{\mathrm{PHZ}}$	Propagation delay, high level to high impedance output	(see Figure 6)		4	10	ns
$\mathrm{T}_{\text {PLZ }}$	Propagation delay, low level to high impedance output			4.3	10	ns
$\mathrm{T}_{\text {PZH }}$	Propagation delay, high impedance to high level output			3	10	ns
$\mathrm{T}_{\text {PZL }}$	Propagation delay, high impedance to low level output			2	10	ns
TPHL_skR1_Dx	Channel to Channel skew-receiver 1 to Any mux related drivers			95		ps
TPLH_skR1_Dx	Channel to Channel skew-receiver 1 to Any mux related drivers			95		ps
TPPHL_skR2_Dx	Channel to Channel skew-receiver 2 to Any mux related drivers			95		ps
TPLH_skR2_Dx	Channel to Channel skew-receiver 2 to Any mux related drivers			95		ps
TPHL_skR3_Dx	Channel to Channel skew-receiver 3 to Any mux related drivers			95		ps
TPLH_skR3_Dx	Channel to Channel skew-receiver 3 to Any mux related drivers			95		ps
TPHL_skR4_Dx	Channel to Channel skew-receiver 4 to Any mux related drivers			95		ps
TPLH_skR4_Dx	Channel to Channel skew-receiver 4 to Any mux related drivers			95		ps

Figure 1. Dual-2 Channel Cross Point Switch/Mux

Notes:

3. All typical values are measured at $25^{\circ} \mathrm{C}$ with a 3.3 V supply.
4. These parameters are measured over supply voltage and temperature ranges recommended for the device.

Figure 2. Dynamic IDD Diagrams

Figure 3. Test Circuit \& Voltage Definitions for the Differential Output Signal ${ }^{[5,6,7]}$

Figure 4. Test Circuit \& Voltage Definitions for the Driver Common-Mode Output Voltage ${ }^{[5,6,7,8]}$

Notes:
5. All input pulses are supplied by a frequency generator with the following characteristics: t_{R} and $\mathrm{t}_{\mathrm{F}} \leq 1 \mathrm{~ns}$; Pulse rep rate $=50 \mathrm{Mpps} ; \mathrm{Pulse}$ width $=10 \pm 0.2 \mathrm{~ns}$.
6. $R L=100$ Ohm.
7. CL includes instrumentation and fixture capacitance within 6 mm of the DUT.
8. VOC measurement requires equipment with a $3-\mathrm{dB}$ bandwith of at least 300 MHz

Figure 5. Differential Receiver to Driver Propagation Delay and Driver Transition Time ${ }^{[5,9,10]}$

Figure 6. Test Circuit and Voltage Definitions for the Driver Common-Mode Output Voltage ${ }^{[5,9]}$

Application Engineering

Figure 7. Termination Scheme for $\mathbf{1 0 0}-\mathrm{Ohm}$ External Termination

Figure 8. Termination Scheme for 100-Ohm Self Termination Interface Chip

Typical Characteristics @ $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 9. VOH vs 10 H

Figure 10. VOL vs IOL

Notes:

9. $\mathrm{RL}=100 \mathrm{Ohm} \pm 1 \%$,
10. Point to Point: RL $=100$ Ohm $\pm 1 \% \mathrm{CL} 3 \mathrm{pF}$.

CYPRESS
Table 7. Technical Notes on STD Drive (LL842, A, and D) vs. High Drive (LL8423, B, and C

	A	B	C	D	Unit
VOX	1.2	1.2	1.2	1.2	V
DC Offset	1.0	1.0	1.0	1.0	V
VOD Min	0.25	0.5	0.25	0.125	V
VOD Max	0.45	0.9	0.45	0.225	V
T/Rise	1.4	1.4	0.6	0.6	ns
T/Fall	1.4	1.4	0.6	0.6	ns

Standard Drive

 Current drive of $\mathbf{1 i}$

Hi Drive
Current drive of 2i

Figure 11.

Ordering Information

Part Number	Package Type	Product Flow
CY2LL8423ZI	28-pin TSSOP	Industrial, -40° to $85^{\circ} \mathrm{C}$
CY2LL8423ZIT	28-pin TSSOP - Tape and Reel	Industrial, -40° to $85^{\circ} \mathrm{C}$
CY2LL8423ZC	28-pin TSSOP	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2LL8423ZCT	28-pin TSSOP - Tape and Reel	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2LL8423OI	28 -pin SSOP	Industrial, -40° to $85^{\circ} \mathrm{C}$
CY2LL8423OIT	28-pin SSOP - Tape and Reel	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
CY2LL8423OC	28 -pin SSOP	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2LL8423OCT	28 -pin SSOP - Tape and Reel	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Note:
11. See Figure 11.

Package Drawings and Dimensions

28-lead (5.3 mm) Shrunk Small Outline Packaqe 028

28-lead Thin Shrunk Small Outline Package (4.40-mm Body) Z29

dIMENSIGNS IN MILLIMETERS. $\frac{\text { MIN. }}{\text { MAX }}$

ComLink is a trademark of Cypress Semiconductor Corp. All product and company names mentioned in this document may be the trademarks of their respective holders.

ComLink ${ }^{\text {TM }}$ Series CY2LL8423

Document History Page

Document Title: CY2LL8423 ComLink ${ }^{\text {TM }}$ Series High-drive Dual 2-Channel LVDS Repeater/Mux Document Number: 38-07065				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	116744	07/08/02	HWT	New Data Sheet
*A	122750	12/15/02	RBI	Added power-up requirements to operating conditions information
*B	124088	02/06/03	RGL	Changed the package drawing and dimension from Z28 to Z29

