Features

■ 10 MHz to 220 MHz maximum operating range

- Zero input-output propagation delay, adjustable by loading on CLKOUT pin
- Multiple low-skew outputs
- 30 ps typical output-output skew
a One input drives five outputs
■ 22 ps typical cycle-to-cycle jitter
■ 13 ps typical period jitter
- Standard and high drive strength options

■ Available in space-saving 150-mil SOIC package
■ 3.3 V or 2.5 V operation
■ Industrial temperature available

Functional Description

The CY23EP05 is a 2.5 V or 3.3 V zero delay buffer designed to distribute low-jitter high-speed clocks and is available in a 8 -pin SOIC package. It accepts one reference input, and drives out five low-skew clocks. The -1H version operates up to 220 (200) MHz frequencies at $3.3 \mathrm{~V}(2.5 \mathrm{~V})$, and has a higher drive strength than the -1 devices. All parts have on-chip PLLs which lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad.

The CY23EP05 PLL enters a power-down mode when there are no rising edges on the REF input ($<\sim 2 \mathrm{MHz}$). In this state, the outputs are three-stated and the PLL is turned off, resulting in less than $25 \mu \mathrm{~A}$ of current draw.

The CY23EP05 is available in different configurations, as shown in the Ordering Information table. The CY23EP05-1 is the base part. The CY23EP05-1H is the high-drive version of the -1 , and its rise and fall times are much faster than the -1 .

These parts are not intended for 5 V input-tolerant applications.

Logic Block Diagram

Contents

Pin Configuration 3
Pin Description 3
Zero Delay and Skew Control 3
Absolute Maximum Conditions 4
Operating Conditions 4
3.3-V DC Electrical Specifications 4
2.5-V DC Electrical Specifications 5
3.3-V and 2.5-V AC Electrical Specifications 5
Switching Waveforms
Test Circuits 7
Supplemental Parametric Information 8
Ordering Information 12
Ordering Code Definitions 12
Acronyms 13
Document Conventions 13
Units of Measure 13
Sales, Solutions, and Legal Information 15
Worldwide Sales and Design Support 15
Products 15
PSoC Solutions 15

Pin Configuration

Pin Description

Pin	Signal	
1	REF $^{[1]}$	Input reference frequency
2	CLK2 $^{[2]}$	Buffered clock output
3	CLK1 $^{[2]}$	Buffered clock output
4	GND $^{\text {CLK3 }}{ }^{[2]}$	Ground
5	V $_{\text {DD }}$	Buffered clock output
6	CLK4 $^{[2]}$	3.3 V or 2.5 V supply
7	CLKOUT $^{[2,3]}$	Buffered clock output
8	Buffered clock output, internal feedback on this pin	

Zero Delay and Skew Control

All outputs should be uniformly loaded to achieve zero delay between the input and output. Since the CLKOUT pin is the internal feedback to the PLL, its relative loading can adjust the input-output delay.
The output driving the CLKOUT pin will be driving a total load of 5 pF plus any additional load externally connected to this pin. For applications requiring zero input-output delay, the total load on
each output pin (including CLKOUT) must be the same. If input-output delay adjustments are required, the CLKOUT load may be changed to vary the delay between the REF input and remaining outputs
For zero output-output skew, be sure to load all outputs equally. For further information refer to the application note titled "CY2305 and CY2309 as PCI and SDRAM Buffers".

Notes

1. Weak pull-down.
2. Weak pull-down on all outputs
3. This output is driven and has an internal feedback for the PLL. The load on this output can be adjusted to change the skew between the reference and output.

Absolute Maximum Conditions

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.
Supply voltage to ground potential -0.5 V to 4.6 V
DC Input Voltage \qquad $. \mathrm{V}_{\mathrm{SS}}-0.5 \mathrm{~V}$ to 4.6 V

Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction temperature \qquad
Static discharge voltage
(per MIL-STD-883, Method 3015.
.>2000 V

Operating Conditions

Parameter	Description	Min	Typ	Max	Unit
V DD3.3	3.3 V supply voltage	3.0	3.3	3.6	V
$\mathrm{V}_{\text {DD2.5 }}$	2.5 V supply voltage	2.3	2.5	2.7	V
$\mathrm{T}_{\text {A }}$	Operating temperature (ambient temperature) - commercial	0	-	70	${ }^{\circ} \mathrm{C}$
	Operating temperature (ambient temperature) - industrial	-40	-	85	${ }^{\circ} \mathrm{C}$
$\mathrm{CLL}^{[4]}$	Load capacitance, < $100 \mathrm{MHz}, 3.3 \mathrm{~V}$	-	-	30	pF
	Load capacitance, < 100 MHz , 2.5 V with high drive	-	-	30	pF
	Load capacitance, < 133.3 MHz, 3.3 V	-	-	22	pF
	Load capacitance, < 133.3 MHz , 2.5 V with high drive	-	-	22	pF
	Load capacitance, <133.3 MHz, 2.5 V with standard drive	-	-	15	pF
	Load capacitance, > 133.3 MHz, 3.3 V	-	-	15	pF
	Load capacitance, > 133.3 MHz, 2.5 V with high drive	-	-	15	pF
$\mathrm{C}_{\text {IN }}$	Input capacitance ${ }^{[5]}$	-	-	5	pF
BW	Closed-loop bandwidth, 3.3 V	-	1-1.5	-	MHz
	Closed-loop bandwidth, 2.5 V	-	0.8	-	MHz
$\mathrm{R}_{\text {OUT }}$	Output impedance, 3.3 V high drive	-	29	-	Ω
	Output impedance, 3.3 V standard drive	-	41	-	Ω
	Output impedance, 2.5 V high drive	-	37	-	Ω
	Output Impedance, 2.5 V standard drive	-	41	-	Ω
t_{PU}	Power-up time for all $\mathrm{V}_{\text {DDs }}$ to reach minimum specified voltage (power ramps must be monotonic)	0.01	-	50	ms
Theta $\mathrm{J}_{\mathrm{A}}{ }^{[6]}$	Dissipation, junction to ambient, 8-pin SOIC	-	131	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Theta $\mathrm{J}^{\text {[}}{ }^{6]}$	Dissipation, junction to case, 8-pin SOIC	-	81	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3.3-V DC Electrical Specifications

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
$V_{\text {DD }}$	Supply voltage		3.0	3.3	3.6	V
$\mathrm{V}_{\text {IL }}$	Input LOW voltage		-	-	0.8	V
V_{IH}	Input HIGH voltage		2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
IIL	Input leakage current	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IL }}$	-10	-	10	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {I }}$	Input HIGH current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	-	-	100	$\mu \mathrm{A}$
V_{OL}	Output LOW voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ (standard drive) $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$ (High drive)	-	-	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Output HIGH voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ (standard drive) $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ (high drive)	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{DD} (PD mode)	Power down supply current	REF $=0 \mathrm{MHz}$ (commercial)	-	-	12	$\mu \mathrm{A}$
		REF $=0 \mathrm{MHz}$ (industrial)	-	-	25	$\mu \mathrm{A}$
IDD	Supply current	Unloaded outputs, 66-MHz REF	-	-	30	mA

Notes

4. Applies to Test Circuit \#1
5. Applies to both REF Clock and internal feedback path on CLKOUT.
6. Theta Ja, EIA JEDEC 51 test board conditions, 2S2P; Theta Jc Mil-Spec 883E Method 1012.1.

2.5-V DC Electrical Specifications

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
V_{DD}	Supply voltage		2.3	2.5	2.7	V
$\mathrm{V}_{\text {IL }}$	Input LOW voltage		-	-	0.7	V
V_{IH}	Input HIGH voltage		1.7	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{I}_{\text {IL }}$	Input leakage current	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
${ }_{1}$	Input HIGH current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	-	-	100	$\mu \mathrm{A}$
V_{OL}	Output LOW voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ (standard drive) $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$ (high drive)	-	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Output HIGH voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ (standard drive) $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ (high drive)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-0.6 \\ & \mathrm{~V}_{\mathrm{DD}}-0.6 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IDD (PD mode)	Power Down supply current	REF $=0 \mathrm{MHz}$ (commercial)	-	-	12	$\mu \mathrm{A}$
		REF $=0 \mathrm{MHz}$ (industrial)	-	-	25	$\mu \mathrm{A}$
I_{DD}	Supply current	Unloaded outputs, 66-MHz REF	-	-	45	mA

3.3-V and 2.5-V AC Electrical Specifications

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
1/t ${ }_{1}$	Maximum frequency ${ }^{[7]}$ (input/output)	3.3 V high drive	10	-	220	MHz
		3.3 V standard drive	10	-	167	MHz
		2.5 V high drive	10	-	200	MHz
		2.5 V standard drive	10	-	133	MHz
TIDC	Input duty cycle	< 133.3 MHz	25	-	75	\%
		> 133.3 MHz	40	-	60	\%
$\mathrm{t}_{2} \div \mathrm{t}_{1}$	Output duty cycle ${ }^{[8]}$	$<133.3 \mathrm{MHz}$	47	-	53	\%
		> 133.3 MHz	45	-	55	\%
$\mathrm{t}_{3}, \mathrm{t}_{4}$	Rise, fall time (3.3 V) ${ }^{[8]}$	Std drive, CL $=30 \mathrm{pF},<100 \mathrm{MHz}$	-	-	1.6	ns
		Std drive, CL $=22 \mathrm{pF}$, $<133.3 \mathrm{MHz}$	-	-	1.6	ns
		Std drive, CL $=15 \mathrm{pF},<167 \mathrm{MHz}$	-	-	0.6	ns
		High drive, CL $=30 \mathrm{pF},<100 \mathrm{MHz}$	-	-	1.2	ns
		High drive, CL $=22 \mathrm{pF}$, $<133.3 \mathrm{MHz}$	-	-	1.2	ns
		High drive, CL $=15 \mathrm{pF},>133.3 \mathrm{MHz}$	-	-	0.5	ns
$\mathrm{t}_{3}, \mathrm{t}_{4}$	Rise, fall time (2.5 V) ${ }^{[8]}$	Std drive, CL = $15 \mathrm{pF},<133.33 \mathrm{MHz}$	-	-	1.5	ns
		High drive, CL $=30 \mathrm{pF},<100 \mathrm{MHz}$	-	-	2.1	ns
		High drive, $\mathrm{CL}=22 \mathrm{pF},<133.3 \mathrm{MHz}$	-	-	1.3	ns
		High drive, CL $=15 \mathrm{pF},>133.3 \mathrm{MHz}$	-	-	1.2	ns
t_{5}	Output to output skew ${ }^{\text {[8] }}$	All outputs equally loaded	-	30	100	ps
t_{6}	Delay, REF rising edge to CLKOUT rising edge ${ }^{[8]}$	PLL enabled at 3.3 V	-100	-	100	ps
		PLL enabled at 2.5 V	-200	-	200	ps
${ }_{7}$	Part to part skew ${ }^{[8]}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$. Any output to any output, 3.3 V supply	-150	-	150	ps
		Measured at $\mathrm{V}_{\mathrm{DD}} / 2$. Any output to any output, 2.5 V supply	-300	-	300	ps

Notes

7. For the given maximum loading conditions. See C_{L} in Operating Conditions Table.
8. Parameter is guaranteed by design and characterization. Not 100% tested in production.

CY23EP05
3.3-V and 2.5-V AC Electrical Specifications (continued)

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
tıock	PLL lock time ${ }^{[8]}$	Stable power supply, valid clocks presented on REF and CLKOUT pins	-	-	1.0	ms
$\mathrm{T}_{\mathrm{JCC}}{ }^{[8,9]}$	Cycle-to-cycle jitter, peak	3.3 V supply, > $66 \mathrm{MHz},<15 \mathrm{pF}$	-	22	55	ps
		3.3 V supply, $>66 \mathrm{MHz}$, < 30 pF , standard drive	-	45	125	ps
		3.3 V supply, $>66 \mathrm{MHz},<30 \mathrm{pF}$, high drive	-	45	100	ps
		2.5 V supply, $>66 \mathrm{MHz}$, $<15 \mathrm{pF}$, standard drive	-	40	100	ps
		2.5 V supply, $>66 \mathrm{MHz},<15 \mathrm{pF}$, high drive	-	35	80	ps
		2.5 V supply, > 66 MHz , < 30 pF , high drive	-	52	125	ps
$\mathrm{T}_{\mathrm{PER}}{ }^{[8,9]}$	Period jitter, peak	3.3 V supply, 66-100 MHz, < 15 pF	-	18	60	ps
		3.3 V supply, > 100 MHz , < 15 pF	-	13	35	ps
		3.3 V supply, > 66 MHz , < 30 pF , standard drive	-	28	75	ps
		3.3 V supply, > $66 \mathrm{MHz},<30 \mathrm{pF}$, high drive	-	26	70	ps
		2.5 V supply, $>66 \mathrm{MHz}$, < 15 pF , standard drive	-	25	60	ps
		2.5 V supply, $66-100 \mathrm{MHz}$, < 15 pF , high drive	-	22	60	ps
		2.5 V supply, > 100 MHz , < 15 pF , high drive	-	19	45	ps

Switching Waveforms

Figure 1. Duty Cycle Timing

Figure 2. All Outputs Rise/Fall Time

Figure 3. Output-Output Skew

Note
9. Typical jitter is measured at 3.3 V or $2.5 \mathrm{~V}, 29^{\circ} \mathrm{C}$, with all outputs driven into the maximum specified load. Further information regarding jitter specifications may be found in the application notes, "Understanding Data Sheet Jitter Specifications for Cypress Products."

Switching Waveforms (continued)
Figure 4. Input-Output Propagation Delay

Figure 5. Part-Part Skew

Test Circuits

Supplemental Parametric Information

Figure 6. 2.5 V Typical Room Temperature Graph for REF Input to CLKn Delay versus Loading Difference between CLKOUT and CLKn. Data is shown for 66 MHz . Delay is a weak function of frequency

Figure 7. 3.3 V Typical Room Temperature Graph for REF Input to CLKn Delay versus Loading Difference between CLKOUT and CLKn. Data is shown for 66 MHz . Delay is a weak function of frequency

Figure 8. 2.7 V Measured Supply Current versus Frequency, Drive Strength, Loading, and Temperature. Note that the $\mathbf{3 0}-\mathrm{pF}$ data above 100 MHz is beyond the data sheet specification of $\mathbf{2 2} \mathbf{~ p F}$

Figure 9. 3.6 V Measured Supply Current versus Frequency, Drive Strength, Loading, and Temperature. Note that the 30-pF high-drive data above 100 MHz is beyond the data sheet specification of 22 pF

Figure 10. Typical 3.3 V Measured Cycle-to-cycle Jitter at $29^{\circ} \mathrm{C}$, versus Frequency, Drive Strength, and Loading

Figure 11. Typical 2.5 V Measured Cycle-to-cycle Jitter at $29^{\circ} \mathrm{C}$, versus Frequency, Drive Strength, and Loading

Figure 12. Typical 3.3 V Measured Period Jitter at $29^{\circ} \mathrm{C}$, versus Frequency, Drive Strength, and Loading

Figure 13. Typical 2.5 V Measured Period Jitter at $29^{\circ} \mathrm{C}$, versus Frequency, Drive Strength, and Loading

Figure 14. 100 MHz (top) and 156.25 MHz (bottom) Typical Phase-noise Data versus V_{DD} and Drive Strength ${ }^{[10]}$

[^0]CY23EP05

Ordering Information

Ordering Code	Package Type	Operating Range
Pb-free	8-pin 150-mil SOIC	Commercial
CY23EP05SXC-1	8-pin $150-\mathrm{mil}$ SOIC - tape and reel	Commercial
CY23EP05SXC-1T	8-pin 150-mil SOIC	Industrial
CY23EP05SXI-1	8 -pin 150-mil SOIC - tape and reel	Industrial
CY23EP05SXI-1T	8-pin 150-mil SOIC	Commercial
CY23EP05SXC-1H	8-pin 150-mil SOIC - tape and reel	Commercial
CY23EP05SXC-1HT	8-pin 150-mil SOIC	Industrial
CY23EP05SXI-1H	8-pin 150-mil SOIC - tape and reel	Industrial
CY23EP05SXI-1HT		

Ordering Code Definitions

CY23EP05

Package Drawing and Dimensions

Figure 15. 8 -Pin ($150-\mathrm{mil}$) SOIC S8

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description
AC	alternating current
DC	direct current
PCI	peripheral component interconnect
PLL	phase-locked loop
SDRAM	synchronous dynamic random access memory
SOIC	small-outline integrated circuit

Document Conventions

Units of Measure
Table 2. Units of Measure

Symbol	Unit of Measure
dBc	decibels relative to carrier
${ }^{\circ} \mathrm{C}$	degree Celsius
Hz	hertz
MHz	megahertz
$\mu \mathrm{A}$	microampere
mA	milliampere
W	ohm
pF	picofarad
ps	picosecond
V	volt
W	watt

Document History Page

Document Title: CY23EP05 2.5 V or 3.3 V, 10-220-MHz, Low Jitter, 5 Output Zero Delay Buffer
Document Number: 38-07759

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	349620	RGL	See ECN	New datasheet
*A	401073	RGL	See ECN	Updated Delay vs. Load graph with standard drive data Added Phase-noise graph
*B	413826	RGL	See ECN	Minor Change: typo - changed from CY23EP05SXC-T to CY23EP05SXC-1T
*C	3273677	CXQ	06/07/2011	1) Added typical column to the Operating Conditions table. Included 3.3 V and 2.5 V typical specs for the two V_{DD} rows. 2) All BW, R Rout, and Theta J_{A} specs are moved to typical column with only dashes left in the Min and Max columns. Removed the "(typical)" note from the description cells for these specs. 3) All other specs just have a dash for the new typical column cells. 4) Changed $I_{\text {il }}$ spec in 3.3-V DC Electrical Specifications and 2.5-V DC Electrical Specifications tables from $+/-10 \mu \mathrm{~A}$ max to $-10 \mu \mathrm{~A}$ min and $10 \mu \mathrm{~A}$ max. 5) Added typical column to the DC Electrical Specifications tables. Typical column is all kept dashes except for the first row $\mathrm{V}_{\mathrm{DD}}(3.3 \mathrm{~V}$ or 2.5 V respectively). 6) Changed $\mathrm{t}_{7} \mathrm{spec}$ from $+/-150 \mathrm{ps}$ max to -150 ps min and 150 ps max (same for the 300 ps spec). 7) Updated package drawing to latest revision. 8) Added Ordering Code Definitions, Acronyms, Units sections.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks \& Buffers	cypress.com/go/clocks cypress.com/go/interface Interface Lighting \& Power Control
cypress.com/go/powerpsoc cypress.com/go/plc	
Optical \& Image Sensing	cypress.com/go/memory
PSoC	cypress.com/go/image
Touch Sensing	cypress.com/go/psoc
USB Controllers	cypress.com/go/touch
Wireless/RF	cypress.com/go/USB

© Cypress Semiconductor Corporation, 2005-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Note
 10. Typical jitter is measured at 3.3 V or $2.5 \mathrm{~V}, 29^{\circ} \mathrm{C}$, with all outputs driven into the maximum specified load. Further information regarding jitter specifications may be found in the application notes, "Understanding Data Sheet Jitter Specifications for Cypress Products."

