CMOS 8-bit Single Chip Microcomputer

Description

The CXP842P24 is a CMOS 8-bit single chip microcomputer integrating on a single chip an A/D converter, serial interface, timer/counter, time base timer, capture timer/counter, and remote control reception circuit besides the basic configurations of 8-bit CPU, ROM, RAM, and I/O port.
The CXP842P24 also provides a power-on reset function and a sleep/stop function that enables lower power consumption.
This IC is the PROM-incorporated version of the CXP84224 with built-in mask ROM. This provides the additional feature of being able to write directly into the program. Thus, it is most suitable for evaluation use during system development and for small-quantity production.

Structure

Silicon gate CMOS IC

Features

- Wide-range instruction system (213 instructions) to cover various types of data
- 16-bit arithmetic/multiplication and division/boolean bit operation instructions
- Minimum instruction cycle
- Incorporated PROM capacity
- Incorporated RAM capacity
- Peripheral functions
- A/D converter
- Serial interface
— Timer
- Remote control reception circuit
- PWM output
- Interruption
- Standby mode
- Package

400 ns at 10 MHz operation
24K bytes
624 bytes

8 bits, 8 channels, successive approximation method (Conversion time of $32 \mu \mathrm{~s} / 10 \mathrm{MHz}$) Incorporated 8-bit, 8-stage FIFO
(Auto transfer for 1 to 8 bytes), 1 channel
8 -bit clock synchronization, 1 channel
8-bit timer
8-bit timer/counter
19-bit time base timer
16-bit capture timer/counter
8 -bit pulse measuring counter, 6-stage FIFO
14 bits, 1 channel
14 factors, 14 vectors, multi-interruption possible
Sleep/stop
64-pin plastic SDIP

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
Block Diagram

Pin Assignment (Top View)

Note) Vpp (Pin 1) is always connected to Vod.

Pin Description

Symbol	1/O		Description
$\begin{gathered} \text { PAO/ANO } \\ \text { to } \\ \text { PA7/AN7 } \end{gathered}$	I/O/Analog input	(Port A) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of the pull-up resistance can be set through the software in a unit of 4 bits. (8 pins)	Analog inputs to A/D converter. (8 pins)
PB0/CINT	I/O/Input	(Port B) Lower 7-bit I/O port in which I/O can be set in a unit of single bits. Also, an uppermost bit (PB7) exclusively for output. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	External capture input to 16-bit timer/counter.
PB1//̄50	I/O/Input		Chip select input for serial interface (CH 0).
PB2/SCK0	1/O///O		Serial clock I/O (CHO).
PB3/SIO	I/O/Input		Serial data input (CH0).
PB4/SO0	I/O/Output		Serial data output (CHO).
PB5/SCK1	1/O///O		Serial clock I/O (CH1).
PB6/SI1	I/O/Input		Serial data input (CH1).
PB7/SO1	Output/Output		Serial data output (CH1).
PC0 to PC7	I/O	(Port C) 8-bit I/O port. I/O can be set in a unit of single bits. Capable of driving 12 mA sink current. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	
PD0 to PD7	I/O	(Port D) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)	
PE0/EC0	Input/Input	(Port E) 6-bit port. Lower 4 bits are for inputs; upper 2 bits are for outputs. Incorporation of pull-up resistor can be set through the software. (6 pins)	External event inputs for timer/counter. (2 pins)
PE1/EC1	Input/Input		
PE2/RMC	Input/Input		Remote control reception circuit input.
PE3/VMI	Input/Input		Non-maskable interruption request input.
PE4/PWM	Output/Output		14-bit PWM output.
PE5/TO	Output/Output		Rectangular wave output for 16-bit timer/counter (duty output 50\%).
PF0 to PF7	I/O	(Port F) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	

Symbol	I/O	Description	
PGO to PG2	I/O	(Port G) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull- up resistor can be set through the software in a unit of 4 bits. (3 pins)	
PIO/INT0 to PI3/INT3	I/O/Input	(Port I) 7-bit I/O ports. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set throgh the software in a unit of 4 bits. (7 pins)	
PI4 to PI6	I/O	External interruption request inputs.	
EXTAL	Input	Crystal connectors for system clock oscillation. When the clock is supplied externally, input to EXTAL; opposite phase clock should be input to XTAL.	
XTAL	Output	Low-level active, system reset.	
$\overline{\text { RST }}$	I/O	Reference voltage input for A/D converter.	
AVREF	Input	A/D converter GND.	
AVss		Positive power supply.	
VDD		Positive power supply for incorporated PROM writing. Connect to VDD during normal operation.	
Vpp		GND	
Vss			

Input/Output Circuit Formats for Pins

Pin	Circuit format	When reset
PAO/ANO to PA7/AN7 8 pins	Port A	Hi-Z
PBO/CINT PB1/CS0 PB3/SI0 PB6/SI1 4 pins	Port B	Hi-Z
PB2/ $\overline{\text { SCK0 }}$ PB5/SCK1 2 pins	Port B	Hi-Z

Pin	Circuit format	When reset
PE4/PWM 1 pin	Port E	High level
PE5/TO 1 pin	Port E	High level
PD0 to PD7 PF0 to PF7 PG0 to PG2 PI4 to PI6 22 pins		Hi-Z

Absolute Maximum Ratings
(Vss = 0V reference)

Item	Symbol	Ratings	Unit	Remarks
Supply voltage	VDD	-0.3 to +7.0	V	
	Vpp	-0.3 to +13.0	V	Incorporated PROM
	AVss	-0.3 to +0.3	V	
Input voltage	VIN	-0.3 to $+7.0 * 1$	V	
Output voltage	Vout	-0.3 to $+7.0{ }^{* 1}$	V	
High level output current	IOH	-5	mA	Output per pin
High level total output current	¿Іон	-50	mA	Total for all output pins
Low level output current	Iol	15	mA	Value per pin, excluding large current outputs
	Iolc	20	mA	Value per pin*2 for large current outputs
Low level total output current	Elob	100	mA	Total for all output pins
Operating temperature	Topr	-10 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Pd	1000	mW	

${ }^{* 1}$ Vin and Vout must not exceed VdD +0.3 V .
*2 The high current drive transistor is the N -ch transistor of Port C (PC).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss = 0V reference)

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	Vdd	4.5	5.5	V	High-speed mode guaranteed operation range*1
		3.5	5.5		Low-speed mode guaranteed operation range*1
		2.5	5.5		Guaranteed data hold range during stop
	Vpp	$\mathrm{Vpp}=\mathrm{V} \mathrm{DD}$		V	*5
High level input voltage	VIH	0.7Vdd	VdD	V	*2
	Vihs	0.8VdD	Vdd	V	Hysteresis input*3
	Vihex	Vdd - 0.4	VDD +0.3	V	EXTAL*4
Low level input voltage	VIL	0	0.3Vdd	V	*2
	VILS	0	0.2VdD	V	Hysteresis input*3
	Vilex	-0.3	0.4	V	EXTAL*4
Operating temperature	Topr	-10	+75	${ }^{\circ} \mathrm{C}$	

*1 High-speed mode is $1 / 2$ frequency demultiplication clock selection; low-speed mode is $1 / 16$ frequency demultiplication clock selection.
*2 Value for each pin of normal input ports (PA, PB3, PB4, PB6, PC, PD, PF, PG, PI4 to PI6).
*3 Value of the following pins: RST, CINT, CS0, SCK0, SCK1, EC0, EC1, RMC, NMI, INT0, INT1, INT2, INT3.
*4 Specifies only during external clock input.
*5 Vpp and Vdd should be set to the same voltage.

Electrical Characteristics

DC Characteristics

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vон	PA to PD, PE4, PE5, PF, PG, PI	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{VDD}=4.5 \mathrm{~V}$, $\mathrm{IoH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output voltage	Vol		$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}$, $\mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
		PC	$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}$, $\mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
Input current	ІІне	EXTAL	$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{H}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	ILIE		V dD $=5.5 \mathrm{~V}$, VIL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	ILLR	$\overline{\mathrm{RST}}$	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V}, \\ & \mathrm{VIL}=0.4 \mathrm{~V} \end{aligned}$	-1.5		-400	$\mu \mathrm{A}$
	IIL	$\begin{aligned} & \mathrm{PA} \text { to } \mathrm{PD}^{* 1}, \\ & \mathrm{PF}, \mathrm{PG}, \mathrm{Pl}^{* 1} \end{aligned}$				-2.0	mA
			V DD $=4.5 \mathrm{~V}, \mathrm{VIL}=4.0 \mathrm{~V}$	-10			$\mu \mathrm{A}$
I/O leakage current	IIz	PE0 to PE3	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V}, \\ & \mathrm{~V}=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Power supply current*2	IDD1	Vdo	High-speed mode operation ($1 / 2$ frequency demultiplier clock) $\begin{aligned} & \mathrm{VDD}_{\mathrm{DD}}=5.5 \mathrm{~V}, 10 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		18	40	mA
	IdDS1		Sleep mode $\begin{aligned} & \mathrm{VDD}_{\mathrm{DD}}=5.5 \mathrm{~V}, 10 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		1.1	8	mA
	IdDS3		Stop mode $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, termination of 10 MHz crystal oscillation.			30	$\mu \mathrm{A}$
Input capacity	Cin	Pins other than PB7, PE4, PE5, AVref, Vdd, Vss	Clock 1MHz OV for no-measured pins		10	20	pF

*1 Pins PA to PD, and PF, PG, PI specify the input current when pull-up resistance has been selected; leakage current when no resistance has been selected. (Excludes output PB7)
*2 When all pins are open.

AC Characteristics
(1) Clock timing ($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	1		10	MHz
System clock input pulse width	$\begin{aligned} & \mathrm{t} \times \mathrm{L}, \\ & \mathrm{t} \times \mathrm{H} \end{aligned}$	EXTAL	Fig. 1, Fig. 2 External clock drive	37.5			ns
System clock input rise time, fall time	tcR, tcF	EXTAL	Fig. 1, Fig. 2 External clock drive			200	ns
Event count input clock pulse width	$\begin{aligned} & \mathrm{t} E \mathrm{E}, \\ & \mathrm{t}_{\mathrm{E}}, \end{aligned}$	$\begin{aligned} & \overline{\mathrm{ECO}} \\ & \overline{\mathrm{EC} 1} \end{aligned}$	Fig. 3	tsys $+50 * 1$			ns
Event count input clock rise time, fall time	ter, tef	$\frac{\overline{\mathrm{ECO}}}{\mathrm{EC} 1}$	Fig. 3			20	ms

*1 tsys indicates the three values below according to the upper two bits (CPU clock selection) of the clock control register (address: 00FEн).
tsys $[\mathrm{ns}]=2000 / \mathrm{fc}($ upper two bits $=" 00 "), 4000 / \mathrm{fc}$ (upper two bits $=$ " $01 "$), $16000 / \mathrm{fc}$ (upper two bits $=" 11$ ")

Fig. 1. Clock timing

Fig. 2. Clock applied condition

Fig. 3. Event count clock timing
(2) Serial transfer (CHO)
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\overline{\mathrm{CSO}} \downarrow \rightarrow \overline{\mathrm{SCKO}}}$ delay time	tocsk	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\mathrm{SCKO}}=$ output mode)		tsys +200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \overline{\text { SCKO }}$ float delay time	tocskf	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\text { SCKO }}=$ output mode)		tsys + 200	ns
$\overline{\overline{\mathrm{CSO}} \downarrow \rightarrow \mathrm{SOO}}$ delay time	tocso	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \mathrm{SOO}$ float delay time	tocsof	SOO	Chip select transfer mode		tsys + 200	ns
CSO High level width	twhcs	CSO	Chip select transfer mode	tsys + 200		ns
$\overline{\text { SCKO }}$ cycle time	tkcy	$\overline{\text { SCKO }}$	Input mode	2tsys +200		ns
			Output mode	16000/fc		ns
$\overline{\text { SCKO }}$ High and Low level widths	$\begin{aligned} & \mathrm{t} \mathrm{KH} \\ & \mathrm{t} k \mathrm{~L} \end{aligned}$	$\overline{\text { SCKO }}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 50		ns
SIO input setup time (for $\overline{\text { SCKO }} \uparrow$)	tsık	SIO	SCK0 input mode	100		ns
			$\overline{\text { SCKO }}$ output mode	200		ns
SIO input hold time (for $\overline{\text { SCKO }} \uparrow$)	tksı	SIO	SCKO input mode	tsys +200		ns
			$\overline{\text { SCKO }}$ output mode	100		ns
$\begin{aligned} & \overline{\text { SCKO }} \downarrow \rightarrow \text { SOO } \\ & \text { delay time } \end{aligned}$	tkso	SOO	SCK0 input mode		tsys +200	ns
			$\overline{\text { SCKO }}$ output mode		100	ns

Note 1) tsys indicates the three values below according to the upper two bits (CPU clock selection) of the clock control register (address: 00FEн).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = " 11 ")
Note 2) The load condition for the $\overline{\text { SCKO }}$ output mode, SOO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 4. Serial transfer CH 0 timing

Serial transfer (CH1)
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
SCK1 cycle time	tkcy	$\overline{\text { SCK1 }}$	Input mode	1000		ns
			Output mode	16000/fc		ns
$\overline{\text { SCK1 }}$ High and Low level widths	$\begin{aligned} & \mathrm{t}_{\mathrm{kH}} \\ & \mathrm{t}^{2} \end{aligned}$	$\overline{\text { SCK1 }}$	Input mode	400		ns
			Output mode	8000/fc - 50		ns
SI1 input setup time (for $\overline{\text { SCK1 }} \uparrow$)	tsık	SI1	$\overline{\text { SCK1 }}$ input mode	100		ns
			$\overline{\text { SCK1 }}$ output mode	200		ns
SI1 input hold time (for $\overline{\text { SCK1 }} \uparrow$)	tksı	SI1	$\overline{\text { SCK1 }}$ input mode	200		ns
			$\overline{\text { SCK1 }}$ output mode	100		ns
$\overline{\text { SCK1 } 1} \downarrow \rightarrow$ SO1 delay time	tkso	SO1	$\overline{\text { SCK1 }}$ input mode		200	ns
			$\overline{\text { SCK1 }}$ output mode		100	ns

Note) The load condition for the SCK1 output mode, SO1 output delay time is $50 \mathrm{pF}+1$ TTL.

Fig. 5. Serial transfer CH 1 timing
(3) A/D converter characteristics
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}$ REF $=4.0$ to AVDD , $\mathrm{VSS}=\mathrm{AVSS}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=5.0 \mathrm{~V} \\ & \mathrm{Vss}=A V \mathrm{Ss}=0 \mathrm{~V} \end{aligned}$			± 3	LSB
Zero transition voltage	VZT*1			-10	70	150	mV
Full-scale transition voltage	$V_{F T}{ }^{* 2}$			4930	5050	5120	mV
Conversion time	toonv			160/fadc*3			$\mu \mathrm{s}$
Sampling time	tsamp			12/fadc*3			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		Vdo - 0.5		Vdd	V
Analog input voltage	Vian	AN0 to AN7		0		AVref	V
AVref current	Iref	AVref	Operation mode		0.6	1.0	mA
	Irefs		Sleep mode Stop mode			10	$\mu \mathrm{A}$

${ }^{*} 1$ VZt : Value at which the digital conversion value changes from 00 h to 01 H and vice versa.
${ }^{*} V_{\text {FT }}$: Value at which the digital conversion value changes from FE to FF and vice versa.
*3 fadc indicates the below values due to ADC operation clock selection.

During PS2 selection, $\mathrm{f} A D C=\mathrm{fc} / 2$
During PS1 selection, $\mathrm{fADC}=\mathrm{fc}$

Fig. 6. Definition of A/D converter terms
(4) Interruption, reset input $\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
External interruption High and Low level widths	$\begin{aligned} & \mathrm{t}_{\mathrm{IH}} \\ & \mathrm{t}_{\star} \end{aligned}$	INTO INT1 INT2 INT3 $\overline{\mathrm{NMI}}$		1		$\mu \mathrm{S}$
Reset input Low level width	trsL	$\overline{\mathrm{RST}}$		32/fc		$\mu \mathrm{s}$

Fig 7. Interruption input timing

Fig. 8. $\overline{\operatorname{RST}}$ input timing
(5) Power-on reset

Item	Symbol	Pin	Condition	Min.	Max.	Unit
Power supply rising time	tR	Vdd	Power-on reset	0.05	50	ms
Power supply cut-off time	toff		Repetitive power-on reset	1		ms

VDD

The power supply shoule rise smoothly.
Fig. 9. Power-on reset

Appendix

(i) Main clock

(ii) Main clock

Fig. 10. SPC700 series recommended oscillation circuit

Manufacturer	Model	$\mathrm{fc}(\mathrm{MHz})$	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	Rd (Ω)	Circuit example
MURATA MFG CO., LTD.	CSA4.19MG	4.19	30	30	0	(i)
	CSA8.00MTZ	8.00				
	CSA10.0MTZ	10.00				
	CST4.19MGW*	4.19				(ii)
	CST8.00MTW*	8.00				
	CST10.0MTW*	10.00				
RIVER ELETEC CORPORATION	HC-49/U03	4.19	12	12	0	(i)
		8.00				
		10.00				
KINSEKI LTD.	HC-49/U (-S)	4.19	27	27	0	
		8.00				
		10.00	20	20		

Those marked with an asterisk $\left(^{*}\right)$ signify types with built-in ground capacitance $\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$.

Product List

Optional item	Mask	CXP842P24Q-1- $\square \square \square$
Package	64-pin plastic SDIP	64 -pin plastic SDIP
ROM capacity	20 K bytes/24K bytes	PROM 24 K bytes
Reset pin pull-up resistor	Existent/non existent	Existent
Power-on reset circuit	Existent/non existent	Existent

64PIN SDIP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SDIP-64P-01
EIAJ CODE	SDIP064-P-0750
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE MASS	8.6 g

