High Power Dual Path Simultaneous DP3T Switch with Control Logic

CXM3544XR

Description

The CXM3544XR can be used in wireless communication systems, for example, dual-band/triple-band and antenna diversity CDMA handsets. This CXM3544XR has an integrated decoder 4 CMOS control inputs. The Sony JPHEMT process is used for low insertion loss and low distortion characteristic. (Applications: Antenna Switch for Cellular Handsets, Dual-band/Triple-band and Antenna Diversity)

Features

- Low insertion loss: 0.30 dB (Typ.) @900MHz, 0.4dB (Typ.) @2GHz
- High linearity: IIP3 = 65dBm (Min.)
- Low voltage operation: VDD $=2.5 \mathrm{~V}$
- No DC blocking capacitors
- 4 CMOS compatible control line
- Lead-Free and RoHS compliant

Package

Small package XQFN 22pin ($2.4 \mathrm{~mm} \times 3.3 \mathrm{~mm} \times 0.35 \mathrm{~mm}$) (Typ.)

Structure

GaAs JPHEMT MMIC, CMOS Logic

Absolute Maximum Ratings

- Bias voltage
- Control voltage
- Operating temperature
- Storage temperature

VDD
Vctl
Topr
Tstg

4
4
-35 to +90
-65 to +150

V $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
$\vee\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$

This IC is ESD sensitive device. Special handling precautions are required.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Configuration

Truth Table

State	CTLA	CTLB	CTLC	CTLD	RF5 (Ant1)	RF4 (Ant2)	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11
1	H	L	L	L	RF1	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON	OFF	ON
2	L	H	L	L	RF2	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	ON	OFF	ON
3	L	L	L	L	RF3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ON	OFF	OFF	ON
4	H	L	H	L	OFF	RF1	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ON	ON	OFF
5	L	H	H	L	OFF	RF2	OFF	OFF	OFF	OFF	ON	OFF	ON	OFF	ON	ON	OFF
6	L	L	H	L	OFF	RF3	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	ON	OFF
7	H	H	L	H	RF1	RF2	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF
9	H	L	L	H	RF1	RF3	ON	OFF	OFF	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF
10	L	H	L	H	RF2	RF3	OFF	ON	OFF	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
12	L	L	H	H	RF3	RF1	OFF	OFF	ON	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF
12	H	RF3	RF2	OFF	OFF	ON	OFF	ON	OFF	ON	OFF	OFF	OFF	OFF			

DC Bias Condition

$\left(\mathrm{Ta}=-35\right.$ to $\left.+90^{\circ} \mathrm{C}\right)$

Item	Min.	Typ.	Max.	Unit
Vctl (H)	1.3	1.8	3.2	V
Vctl (L)	0	-	0.3	
Vdd	2.5	2.8	3.2	

Electrical Characteristics 1

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VdD}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Control current	Ictl	$\mathrm{Vctl}=1.8 \mathrm{~V}$, per 1 ctl pin	-	1	5	$\mu \mathrm{~A}$
Supply current	IDD	$\mathrm{VDD}=2.8 \mathrm{~V}$	-	150	250	$\mu \mathrm{~A}$
Switching speed	Swt	$\mathrm{VDD}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 \mathrm{~V} / 1.8 \mathrm{~V}$	-	-	5	$\mu \mathrm{~s}$

Electrical characteristics are measured with all RF ports terminated in 50Ω.
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VdD}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	Path	Condition	Min.	Typ.	Max.	Unit
VSWR	VSWR	All port in active paths	824 to 2170MHz	-	1.1	1.4	-
P0.2dB Compression input power	P0.2dB	$\begin{aligned} & \text { RF4 (Ant2) -RF1, 2, } 3 \\ & \text { RF5 (Ant1) -RF1, 2, } 3 \end{aligned}$	824 to 930 MHz 1710 to 1980 MHz 2500 to 2690 MHz	33	-	-	dBm
Input IP3	IIP3	$\begin{aligned} & \text { RF4 (Ant2) -RF1, 2, } 3 \\ & \text { RF5 (Ant1) -RF1, 2, } 3 \end{aligned}$	${ }^{* 1},{ }^{*}{ }^{\text {a }}$	65	-	-	dBm
			${ }^{*}$, *3	65	-	-	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
*1 Pin $=27+27 \mathrm{dBm}, 835+836 \mathrm{MHz}$, IIP3 $=(3 \times$ Pout $-\mathrm{IM} 3) / 2+$ Loss
*2 Pin $=27+27 \mathrm{dBm}, 1950+1951 \mathrm{MHz}, \mathrm{IIP} 3=(3 \times$ Pout $-\mathrm{IM} 3) / 2+$ Loss
*3 Measured with recommended circuit
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VdD}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	State *1	Path	Condition	Min.	Typ.	Max.	Unit
Insertion loss	IL	1-6	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	0.30	0.45	dB
				$\mathrm{Pin}=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	0.35	0.50	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2110$ to 2170 MHz	-	0.40	0.55	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2500$ to 2690 MHz	-	0.45	0.60	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	0.30	0.45	
				$\mathrm{Pin}=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	0.35	0.50	
				Pin $=10 \mathrm{dBm}, 2110$ to 2170 MHz	-	0.40	0.55	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2500$ to 2690 MHz	-	0.45	0.60	
		7-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	0.33	0.48	dB
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	0.45	0.60	
				Pin $=10 \mathrm{dBm}, 2110$ to 2170 MHz	-	0.50	0.65	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2500$ to 2690 MHz	-	0.60	0.75	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	0.33	0.48	
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	0.45	0.60	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2110$ to 2170 MHz	-	0.50	0.65	
				Pin= 10dBm, 2500 to 2690 MHz	-	0.60	0.75	
Isolation	ISO	1-6	$\begin{aligned} & \text { RF4 (Ant2) } \\ & - \text { RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	25	35	-	dB
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	20	28	-	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2110$ to 2170 MHz	20	27	-	
				Pin= $10 \mathrm{dBm}, 2500$ to 2690 MHz	20	25	-	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	25	36	-	
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	20	29	-	
				Pin= 10dBm, 2110 to 2170 MHz	20	28	-	
				Pin $=10 \mathrm{dBm}, 2500$ to 2690 MHz	20	25	-	
		7-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	21	-	-	dB
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	16	-	-	
				Pin= $10 \mathrm{dBm}, 2110$ to 2170 MHz	15	-	-	
				Pin= $10 \mathrm{dBm}, 2500$ to 2690 MHz	13	-	-	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	21	-	-	
				Pin= 32dBm, 1710 to 1990 MHz	16	-	-	
				Pin= $10 \mathrm{dBm}, 2110$ to 2170 MHz	15	-	-	
				Pin $=10 \mathrm{dBm}, 2500$ to 2690 MHz	13	-	-	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
*1 Control state on truth table. (State 1-6: Single path mode, State 7-12: Simultaneous mode)
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	State	Path	Condition	Min.	Typ.	Max.	Unit
Harmonics	2f0	1-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	-48	-36	dBm
	3f0				-	-44	-36	
	$2 \mathrm{f0}$			Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	-46	-36	
	$3 \mathrm{f0}$				-	-47	-36	
	$2 \mathrm{f0}$			Pin $=26 \mathrm{dBm}, 1428$ to 1453 MHz	-	-65	-45	
	$3 \mathrm{f0}$				-	-65	-45	
	2f0			Pin $=26 \mathrm{dBm}, 1920$ to 1980 MHz	-	-61	-45	
	3f0				-	-64	-45	
	2f0		$\begin{aligned} & \text { RF5 (Ant1) } \\ & -R F 1,2,3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	-50	-36	dBm
	3f0				-	-44	-36	
	2f0			Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	-52	-36	
	3f0				-	-46	-36	
	$2 \mathrm{f0}$			Pin $=26 \mathrm{dBm}, 1428$ to 1453 MHz	-	-65	-45	
	$3 \mathrm{f0}$				-	-65	-45	
	2f0			Pin= 26dBm, 1920 to 1980 MHz	-	-62	-45	
	$3 \mathrm{f0}$				-	-65	-45	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
*1 Control state on truth table. (State 1-6: Single path mode, State 7-12: Simultaneous mode)
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	State	Path	Condition	Min.	Typ.	Max.	Unit
Inter modulation distortion	IMD2	1-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & - \text { RF1, 2, } \end{aligned}$	$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=45 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-122	-105	dBm
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=1715 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-118	-105	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=190 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-115	-105	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=4090 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-106	-102	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=45 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-120	-105	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=1715 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-120	-105	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=190 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-107	-103	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \mathrm{Pjam}=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=4090 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-112	-105	
	IMD3	1-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & - \text { RF1, 2, } 3 \end{aligned}$	$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=790 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-110	-105	dBm
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=2550 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-113	-105	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=1760 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-108	-104	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=6040 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-111	-105	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \mathrm{fjam}=790 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-110	-105	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=2550 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-113	-105	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=1760 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-108	-104	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \mathrm{Pjam}=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \mathrm{fjam}=6040 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-111	-105	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
Measured with the recommended circuit.
*1 Control state on truth table. (State 1-6: Single path mode, State 7-12: Simultaneous mode)
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	Path	Condition					Min.	Typ.	Max.	Unit
Triple beat ratio	TBR		PTx at RF			Jammerat Ant $-30 \mathrm{dBm}$ [dBm]	Triple beat product at RF [MHz]				
			$\begin{gathered} \mathrm{Pin} \\ {[\mathrm{dBm}]} \end{gathered}$	$\begin{gathered} \text { PTx1 } \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{gathered} \text { PTx2 } \\ {[\mathrm{MHz}]} \end{gathered}$						
		$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } \\ & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } \end{aligned}$	21.5	835.5	836.5	881.5	881.5 ± 1	81	-	-	dBc
			21.5	1880	1881	1960	1960 ± 1	81	-	-	
			13.5	1732	1733	2132	2132 ± 1	81	-	-	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
Measured with the recommended circuit.
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	Path	Condition			Min.	Typ.	Max.	Unit
Input IP2	IIP2		$\begin{gathered} \text { PTx at RF } \\ 24 \mathrm{dBm} \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{gathered} \text { Jammer } \\ \text { at Ant } \\ -20 \mathrm{dBm} \\ {[\mathrm{MHz}]} \end{gathered}$	IM2 Product at RF [MHz]				
		$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, 3 } \\ & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } \end{aligned}$	836.61	1718.22	881.61	113.5	-	-	dBm
			836.61	45	881.61	95.5	-	-	
			1885	3850	1965	95.5	-	-	
			1885	80	1965	95.5	-	-	
			1732.5	3865	2132.5	95.5	-	-	
			1732.5	400	2132.5	95.5	-	-	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
Measured with the recommended circuit.

Electrical Characteristics 2

$\left(\mathrm{Ta}=-35\right.$ to $+90^{\circ} \mathrm{C}, \mathrm{VdD}=2.5$ to $\left.3.2 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Control current	Ictl	$\mathrm{Vctl}=1.8 \mathrm{~V}$, per 1 ctl pin	-	-	5	$\mu \mathrm{~A}$
Supply current	IDD		-	-	350	$\mu \mathrm{~A}$
Switching speed	Swt	$\mathrm{Vctl}=0 \mathrm{~V} / 1.8 \mathrm{~V}$	-	-	5	$\mu \mathrm{~s}$

Electrical characteristics are measured with all RF ports terminated in 50Ω.
$\left(\mathrm{Ta}=-35\right.$ to $+90^{\circ} \mathrm{C}, \mathrm{VdD}=2.5$ to $\left.3.2 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	Path	Condition	Min.	Typ.	Max.	Unit
VSWR	VSWR	All port in active paths	824 to 2170 MHz	-	1.1	-	-
Po.2dB Compression input power	P0.2dB	$\begin{aligned} & \text { RF4 (Ant2) -RF1, 2, } 3 \\ & \text { RF5 (Ant1) -RF1, 2, } 3 \end{aligned}$	824 to 930 MHz 1710 to 1980 MHz 2500 to 2690 MHz	33	-	-	dBm
Input IP3	IIP3	$\begin{aligned} & \text { RF4 (Ant2) -RF1, 2, } 3 \\ & \text { RF5 (Ant1) -RF1, 2, } 3 \end{aligned}$	${ }^{*}$, *3	63	-	-	dBm
			*2, *3	63	-	-	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
*1 Pin $=27+27 \mathrm{dBm}, 835+836 \mathrm{MHz}$, IIP3 $=(3 \times$ Pout $-\mathrm{IM} 3) / 2+$ Loss
*2 Pin $=27+27 \mathrm{dBm}, 1950+1951 \mathrm{MHz}, \mathrm{IIP} 3=(3 \times$ Pout $-\mathrm{IM} 3) / 2+$ Loss
*3 Measured with recommended circuit
$\left(\mathrm{Ta}=-35\right.$ to $+90^{\circ} \mathrm{C}, \mathrm{V} D=2.5$ to $\left.3.2 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	State *1	Path	Condition	Min.	Typ.	Max.	Unit
Insertion loss	IL	1-6	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	-	0.55	dB
				$\mathrm{Pin}=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	-	0.60	
				Pin $=10 \mathrm{dBm}, 2110$ to 2170 MHz	-	-	0.65	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2500$ to 2690 MHz	-	-	0.70	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	-	0.55	
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	-	0.60	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2110$ to 2170 MHz	-	-	0.65	
				Pin $=10 \mathrm{dBm}, 2500$ to 2690 MHz	-	-	0.70	
		7-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	-	0.58	dB
				$\mathrm{Pin}=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	-	0.70	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2110$ to 2170 MHz	-	-	0.75	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2500$ to 2690 MHz	-	-	0.85	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	-	0.58	
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	-	0.70	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2110$ to 2170 MHz	-	-	0.75	
				$\mathrm{Pin}=10 \mathrm{dBm}, 2500$ to 2690 MHz	-	-	0.85	
Isolation	ISO	1-6	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	25	-	-	dB
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	20	-	-	
				Pin $=10 \mathrm{dBm}, 2110$ to 2170 MHz	20	-	-	
				Pin $=10 \mathrm{dBm}, 2500$ to 2690 MHz	20	-	-	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	25	-	-	
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	20	-	-	
				Pin $=10 \mathrm{dBm}, 2110$ to 2170 MHz	20	-	-	
				Pin $=10 \mathrm{dBm}, 2500$ to 2690 MHz	20	-	-	
		7-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	20	-	-	dB
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	15	-	-	
				Pin= $10 \mathrm{dBm}, 2110$ to 2170 MHz	14	-	-	
				Pin $=10 \mathrm{dBm}, 2500$ to 2690 MHz	12	-	-	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	20	-	-	
				Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	15	-	-	
				Pin $=10 \mathrm{dBm}, 2110$ to 2170 MHz	14	-	-	
				Pin $=10 \mathrm{dBm}, 2500$ to 2690 MHz	12	-	-	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
*1 Control state on truth table. (State 1-6: Single path mode, State 7-12: Simultaneous mode)
$\left(\mathrm{Ta}=-35\right.$ to $+90^{\circ} \mathrm{C}, \mathrm{V} D=2.5$ to $\left.3.2 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	State	Path	Condition	Min.	Typ.	Max.	Unit
Harmonics	2f0	1-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & - \text { RF1, 2, } \end{aligned}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	-	-36	dBm
	$3 \mathrm{f0}$				-	-	-36	
	2f0			Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	-	-36	
	$3 \mathrm{f0}$				-	-	-36	
	$2 \mathrm{f0}$			Pin $=26 \mathrm{dBm}, 1428$ to 1453 MHz	-	-	-45	
	3f0				-	-	-45	
	2f0			Pin $=26 \mathrm{dBm}, 1920$ to 1980 MHz	-	-	-45	
	3f0				-	-	-45	
	2f0		$\begin{array}{\|l} \text { RF5 (Ant1) } \\ \text {-RF1, 2, } \end{array}$	Pin $=34 \mathrm{dBm}, 824$ to 960 MHz	-	-	-36	dBm
	3f0				-	-	-36	
	2f0			Pin $=32 \mathrm{dBm}, 1710$ to 1990 MHz	-	-	-36	
	$3 \mathrm{f0}$				-	-	-36	
	$2 \mathrm{f0}$			Pin $=26 \mathrm{dBm}$, 1428 to 1453 MHz	-	-	-45	
	$3 \mathrm{f0}$				-	-	-45	
	$2 \mathrm{f0}$			Pin $=26 \mathrm{dBm}$, 1920 to 1980 MHz	-	-	-45	
	$3 \mathrm{f0}$				-	-	-45	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
*1 Control state on truth table. (State 1-6: Single path mode, State 7-12: Simultaneous mode)
$\left(\mathrm{Ta}=-35\right.$ to $+90^{\circ} \mathrm{C}, \mathrm{V} D=2.5$ to $\left.3.2 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	State	Path	Condition	Min.	Typ.	Max.	Unit
Inter modulation distortion	IMD2	1-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \mathrm{fjam}=45 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-	-102	dBm
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=1715 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-	-102	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=190 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-	-102	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=4090 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-	-99	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } \end{aligned}$	$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=45 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-	-102	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=1715 \mathrm{MHz}, \\ & \text { fim }=880 \mathrm{MHz} \end{aligned}$	-	-	-102	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=190 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-	-100	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=4090 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-	-102	
	IMD3	1-12	$\begin{aligned} & \text { RF4 (Ant2) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=790 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-	-102	dBm
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=2550 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-	-102	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=1760 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-	-101	
				$\begin{aligned} & \mathrm{Ptx}=21.5 \mathrm{dBm}, \mathrm{Pjam}=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \mathrm{fjam}=6040 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-	-102	
			$\begin{aligned} & \text { RF5 (Ant1) } \\ & \text {-RF1, 2, } 3 \end{aligned}$	$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=790 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-	-102	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=835 \mathrm{MHz}, \text { fjam }=2550 \mathrm{MHz}, \\ & \mathrm{fim}=880 \mathrm{MHz} \end{aligned}$	-	-	-102	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=1760 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-	-101	
				$\begin{aligned} & \text { Ptx }=21.5 \mathrm{dBm}, \text { Pjam }=-15 \mathrm{dBm}, \\ & \mathrm{ftx}=1950 \mathrm{MHz}, \text { fjam }=6040 \mathrm{MHz}, \\ & \mathrm{fim}=2140 \mathrm{MHz} \end{aligned}$	-	-	-102	

Electrical characteristics are measured with all RF ports terminated in 50Ω.
Measured with the recommended circuit.
*1 Control state on truth table. (State 1-6: Single path mode, State 7-12: Simultaneous mode)

Recommended Circuit

Note) 1. No DC blocking capacitors are required on all RF ports.
2. The DC levels of all RF ports are GND.
3. L1 $(27 \mathrm{nH})$ and C1 (12pF) are recommended on antenna port for ESD protection.
4. Cbypass (100 pF) is recommended on VDD for DC line filtering.

PCB Layout Template

XQFN-22P-01 Macro for MMIC (Reference)

Specification		
- PKG size:	$3.3 \mathrm{~mm} \times 2.4 \mathrm{~mm}$	t 0.35 mm
- Terminal pitch:	0.4 mm	
- Terminal length:	0.3 mm	
- Mask thickness:	0.11 mm	

Detail A

Mask open area (Solder printing area)

Board resist open area
Metal area in board (GND plane is recommended.)
-....: PKG outline

Package Outline

(Unit: mm)

$$
22 P \mid N \quad X Q F N \quad(P L A S T \mid C)
$$

TERMINAL SECTION

Note:Cutting burr of lead are $0.05 m m$ MAX.
PACKAGE STRUCTURE

SONY CODE	XQFN-22P-01
JEITA CODE	-
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RES IN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.019

AP-4000-22008S Rev.O
LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi $: 1-4 \mathrm{wt} \%$
PLATING THICKNESS	$5-18 \mu \mathrm{~m}$

Marking

MARKING C：M3544

注1）B 部はロツト番号（Max3文字で通し記号）を配置する。	
（規定文字数未満につき省略は省略規定に従う。	
製造年は下記 2 進法ビット方式により表示する。）	
a 部年コード（ 2 進法ビツト方式の1ビツト目を表示）を配置する。	
b 部年コード（ 2 進法ビツト方式の2ビツト目を表示）を配置する。	
C部年コード（ 2 進法ビツト方式の3ビツト目を表示）を配置する。	
d部年コード（ 2 進法ビツト方式の4ビツト目を表示）を配置する。	
注2）C部は製品名（Max5文字）を配置する。	
（5文字を超える場合は製品名省略標示規定に従う。）	
注3）マーク深さは，Max0．05mmの事。	
＜INSTRUCTIONS＞	
1）LOT NO．（ MAX 3 CHARACTERS ：SERIAL CODE ）IN SECTION B．	
（ FOLLOW RULES FOR ABBREVIATIONS．	
MANUFACTURING YEAR IS DISPLAYED BY FOLLOWING BYNARY BIT SYSTEM．	
A YEAR CODE（ THE IST BIT OF A BINARY SYSTEM BIT SYSTEM IS DISPLAYED IN I DOT ）IN SECTION a．	
A YEAR CODE（ THE 2ND BIT OF A BINARY SYSTEM BIT SYSTEM IS DISPLAYED IN I DOT ）IN SECTION b．	
A YEAR CODE（ THE 3RD BIT OF A BINARY SYSTEM BIT SYSTEM IS DISPLAYED IN I DOT ）IN SECTION C．	
A YEAR CODE（ THE 4TH BIT OF A BINARY SYSTEM BIT SYSTEM IS DISPLAYED IN I DOT ）IN SECTION d．	
2）TYPE NO．（ MAX 5 CHARACTERS ）IN SECTION C．	
（ FOR MORE THAN 5 CHARACTERS FOLLOW RULES FOR ABBREVIATIONS．）	
3）MARK DEPTH MAX 0.05 mm ．	

