High Linearity DP4T Antenna Switch for GSM/UMTS/CDMA

CXM3540XR

Description

The CXM3540XR is a high power and high linearity DP4T antenna switch for GSM/UMTS/CDMA applications. The low insertion loss on transmit means increased talk time as the Tx power amplifier can be operated at a lower output level.
The Integrated logic decoder reduces component count and simplifies PCB layout by allowing direct connection of the switch to digital base band control lines with the CMOS logic levels.
Sony GaAs JPHEMT MMIC Process is used.
(Applications: GSM/UMTS GSM/CDMA dual mode handsets, CDMA handsets, UMTS handsets)

Features

- Low insertion loss: 0.30 dB (typ.) @34dBm (Cellular Band)
0.35 dB (typ.) @32dBm (PCS Band)
- High linearity: IIP3 = 70dBm
- Low voltage operation VDD $=2.5 \mathrm{~V}$
- No DC blocking capacitors
- Lead-Free and RoHS compliant

Package
Small package 22-pin XQFN $(2.4 \mathrm{~mm} \times 3.3 \mathrm{~mm} \times 0.35 \mathrm{~mm})$ (Typ.)

Structure

GaAs JPHEMT MMIC

This IC is ESD sensitive device. Special handling precautions are required.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Absolute Maximum Ratings

- Bias voltage
- Control voltage
- Input power Max.
- Operating temperature
- Storage temperature
- Maximum power dissipation PD
*1 $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times \mathrm{t}: 0.8 \mathrm{~mm}$ Mounted on standard board (FR-4)

Block Diagram

Pin Configuration

Pin Description

Pin No.	Symbol	Pin No.	Symbol
1	CTLD	12	GND
2	GND	13	RF6
3	GND	14	GND
4	RF4	15	GND
5	GND	16	RF5
6	RF3	17	GND
7	GND	18	GND
8	RF2	19	VDD
9	GND	20	CTLA
10	RF1	21	CTLB
11	GND	22	CTLC

Truth Table

State	CTLA	CTLB	CTLC	CTLD	Active path	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14
1	L	L	H	L	RF5-RF1	ON	OFF	ON	ON	ON	OFF	ON							
2	L	L	H	H	RF5-RF2	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	ON	ON	OFF	ON
3	L	H	H	L	RF5-RF3	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	ON	ON	OFF	ON	OFF	ON
4	H	L	H	L	RF5-RF4	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	OFF	ON
5	L	L	L	L	RF6-RF1	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF
6	L	L	L	H	RF6-RF2	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF	ON	ON	ON	OFF
7	L	H	L	L	RF6-RF3	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	ON	ON	OFF	ON	ON	OFF
8	H	L	L	L	RF6-RF4	OFF	ON	ON	ON	ON	OFF	ON	OFF						

DC Bias Condition

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Min.	Typ.	Max.	Unit
$\mathrm{Vctl}(H)$	1.5	1.8	3.2	V
$\mathrm{Vctl}(\mathrm{L})$	0	-	0.3	
V DD	2.5	2.8	3.2	

Electrical Characteristics

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \mathrm{~V}, \mathrm{Vctl}=0 / 1.8 \mathrm{~V}\right)$

Item	Symbol	Path	Condition	Min.	Typ.	Max.	Unit
Insertion loss	IL	$\begin{aligned} & \text { RF5 - RF1, 2, 3, } 4 \\ & \text { RF6 - RF1, 2, 3, } 4 \end{aligned}$	${ }^{*} 1$		0.30	0.45	dB
			1575.42MHz		0.30	0.45	
			*2		0.35	0.50	
			*3		0.40	0.55	
Isolation	ISO.	$\begin{aligned} & \text { RF5 - RF1, 2, 3, } 4 \\ & \text { RF6-RF1, 2, 3, } 4 \end{aligned}$	${ }^{*} 1$	25	38		dB
			1575.42MHz	24	36		
			*2	22	35		
			*3	21	30		
VSWR	VSWR		824 to 2170 MHz		1.1		-
Harmonics	2fo	$\begin{aligned} & \text { RF5 - RF1, 2, 3, } 4 \\ & \text { RF6-RF1, 2, 3, } 4 \end{aligned}$	${ }^{*}$		-60	-36	dBm
	3fo				-45	-36	
	2fo		*2		-60	-36	
	3fo				-45	-36	
	2fo		*9		-95	-75	dBc
	3fo				-90	-75	
	2fo		${ }^{10}$		-95	-75	
	3fo				-90	-75	
P0.2dB compression input power	P0.2dB	$\begin{aligned} & \text { RF5 - RF1, 2, 3, } 4 \\ & \text { RF6 - RF1, 2, 3, } 4 \end{aligned}$	824 to 930 MHz	35.5			dBm
			1710 to 1980 MHz	33.5			
IMD3	IMD3	$\begin{aligned} & \text { RF5 - RF1, 2, 3, } 4 \\ & \text { RF6 - RF1, 2, 3, } 4 \end{aligned}$	*4, *8		-110		dBm
			*5, *8		-110		
Input IP3	IIP3	$\begin{aligned} & \text { RF5 - RF1, 2, 3, } 4 \\ & \text { RF6 - RF1, 2, 3, } 4 \end{aligned}$	*6, *8	65	70		dBm
			*7, *8	65	70		
Control current	Ictl		$\mathrm{Vctl}=1.8 \mathrm{~V}$		0.005	10	$\mu \mathrm{A}$
Supply current	Idd		$\mathrm{VDD}=2.8 \mathrm{~V}$		0.15	0.3	mA
Switching speed	Swt		$\begin{aligned} & \mathrm{VDD}=2.8 \mathrm{~V}, \\ & \mathrm{Vctl}=0 \mathrm{~V} / 1.8 \mathrm{~V} \end{aligned}$		2	5	$\mu \mathrm{S}$

Electrical characteristics are measured with all RF ports terminated in 50Ω.
*1 $\mathrm{Pin}=34 \mathrm{dBm}, \mathrm{f}=824$ to 960 MHz
*2 $\mathrm{Pin}=32 \mathrm{dBm}, \mathrm{f}=1710$ to 1990 MHz
*3 Pin $=10 \mathrm{dBm}, \mathrm{f}=2110$ to 2170 MHz
*4 Ptx $=21.5 \mathrm{dBm}$, Pjam $=-15 \mathrm{dBm}, \mathrm{ftx}=835 \mathrm{MHz}$, fjam $=790 \mathrm{MHz}$, fim $=880 \mathrm{MHz}$
*5 Ptx $=21.5 \mathrm{dBm}, \mathrm{Pjam}=-15 \mathrm{dBm}, \mathrm{ftx}=1950 \mathrm{MHz}, \mathrm{fjam}=1760 \mathrm{MHz}, \mathrm{fim}=2140 \mathrm{MHz}$
*6 Pin $=27+27 \mathrm{dBm}, 835+836 \mathrm{MHz}, \mathrm{IIP} 3=(3 \times$ Pout $-\mathrm{IM} 3) / 2+$ Loss
*7 Pin $=27+27 \mathrm{dBm}, 1950+1951 \mathrm{MHz}, \mathrm{IIP} 3=(3 \times$ Pout $-\mathrm{IM} 3) / 2+$ Loss
*8 Measured with recommended circuit
*9 $\mathrm{Pin}=25 \mathrm{dBm}, \mathrm{f}=890$ to 930 MHz
*10 Pin $=25 \mathrm{dBm}, \mathrm{f}=1920$ to 1980 MHz

Recommended Circuit

Note) 1. No DC blocking capacitors are required on all RF ports.
2. DC levels of all RF ports are GND.
3. L1, L2, C1 and C2 are recommended on Ant port for ESD protection.

Package Outline

(Unit: mm)

$$
22 P \mid N \quad X Q F N \quad(P L A S T \mid C)
$$

TERMINAL SECTION

Note:Cutting burr of lead are 0.05 mm MAX.
PACKAGE STRUCTURE

SONY CODE	XQFN-22P-01
JEITA CODE	-
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.019

AP-4000-22008S Rev. O
LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi $: 1-4 \mathrm{wt} \%$
PLATING THICKNESS	$5-18 \mu \mathrm{~m}$

