1 chip GPS LSI

Description

The CXD2931R is a dedicated LSI for the GPS (Global Positioning System) satellite-based position measurement system.
This LSI contains a 32-bit RISC CPU, 2M-bit MASK ROM, RAM, UART, timer, and others.
This LSI, used together with the RF LSI (CXA1951AQ), enables the configuration of a 2-chip system capable of measuring its position anywhere on the globe.

Features

- 16-channel GPS receiver capable of simultaneously receiving 16 satellites
- Supports differential GPS
- Comforms to RTCM SC-104 Ver. 2.1
- Supports DARC
- All-in-view measurement
- 2-satellite measurement
- Timer supporting GPS time
- High performance 32-bit RISC CPU
- 256K-byte program ROM
- 36K-byte RAM
- 3-channel UART
- Baud rate generator
- Supports 1.2K, 2.4K, 4.8K, 9.6K, 19.2K and 38.4 K baud
— Supports 1/2/4-byte buffer mode
- 23-bit general-purpose I/O port capable of defining input/output independently for each bit
- 8-bit successive approximation system A/D converter

Structure

Silicon gate CMOS IC

Absolute Maximum Ratings

- Supply voltage Vdd Vss -0.5 to 4.6 V
- Input voltage \quad VI Vss -0.5 to VdD +0.5 V
- Output voltage Vo Vss -0.5 to Vdd +0.5 V
- Operating temperature Topr -40 to $+85 \quad{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -50 to $+150 \quad{ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

- Supply voltage	VDD	3.0 to 3.6	V
- Operating temperature Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	

Input/Output Pin Capacitance

- Input capacitance	CIn	9 (Max.)	pF
- Output capacitance	Cout	11 (Max.)	pF
- I/O capacitance	CI/O	11 (Max.)	pF

Performance

- 16-channel GPS receiver
- High performance 32-bit RISC CPU
- Reception frequency 1575.42MHz (L1 band, CA code)
- Reception sensitivity (using the CXA1951AQ in the RF block)
-130 dBm or less
- Time to first fix* (time until initial measurement after power-on)

Cold Start (without ephemeris and almanac) 35 to 60s
Warm Start (without ephemeris with almanac) 33 to 50s
Hot Start (with ephemeris and almanac) 6 to 20s
Reacquisition Time (interrupt recovery time) Less than 5 minutes: < 3 to 6 s 5 minutes or more: < 6 to 10 s

- Positioning accuracy

Stand alone (GPS unit only)
D-GPS (differential GPS)

- Measurement data update time
- Communication method
$1 \sigma:<30 \mathrm{~m}$
$3 \sigma:<90 m$
$1 \sigma:<6 m$
$3 \sigma:<18 m$
Every 1s
Sony standard serial communication
Supports NMEA-0183
- All-in-view measurement
- 2-satellite measurement
- High performance 32-bit RISC CPU
* The noted values may be exceeded depending on the operating environment and other conditions.

GPS receiver system diagram using the CXD2931R

Block Diagram

Pin Configuration

Pin Configuration

Pin	Symbol	I/O	Description
1	AVD	-	A/D converter power supply.
2	AVIN	1	Analog input.
3	VRT	1	Reference input
4	VRB	1	Reference input
5	AVS	-	A/D converter GND.
6	Vss	-	GND
7	TCXO	1	
8	$\overline{\text { XTCXO }}$	0	TOXO binary conversion circuitcrystal oscillator.
9	Vdd	-	Power supply.
10	OTCXO	O	TCXO clock output.
11	TESTO	1	Test (Low level fixed)
12	TEST1	1	Test. (Low level fixed)
13	CCKI	1	
14	$\overline{\text { CCKO }}$	O	Timer oscillation. (32.768kHz $\pm 100 \mathrm{ppm})$
15	Vss	-	GND
16	ICSTO	1	
17	ICST1	1	Test. (Low level fixed)
18	IFO	1	IF signal binary conversion circuit
19	IF0O	0	If signal binary conversion circuit.
20	TCXOS	1	TCXO select. (Low: TCXO/2, High: TCXO through)
21	Vdd	-	Power supply.
22	HOLD	1	Hold input signal. (High: Hold)
23	NMI	1	Non maskable interrupt.
24	PMI	1	Program maskable interrupt.
25	HOLDA	O	Hold acknowledge signal.
26	IODBK	0	Break signal for debugging.
27	EXRS	1	Reset input signal.
28	PWRST	1	Connect to main power supply. Leave open during backup.
29	Vss	-	GND
30	CLKI	1	ck oscillation circut.
31	$\overline{\text { CLKO }}$	0	CPU clock oscillation circuit.
32	CLKS	1	CPU clock select signal. (Low: TCXO, High: CLKI)
33	CLKOUT	O	CPU clock output.
34	Vdd	-	Power supply.
35	RUN	0	Signal indicating CPU operating status.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Description
36	IWR	0	Write signal for external expansion memory.
37	IRD	0	Read signal for external expansion memory.
38	ICS0	0	Chip select 0 for external expansion memory.
39	Vss	-	GND
40	ICS1	0	Chip select 1 for external expansion memory.
41	XROMW	1	Wait signal for external expansion memory. (High: Wait)
42	IADR1	I/O	(LSB)
43	IADR2	I/O	
44	IADR3	I/O	Address signal for external expansion memory.
45	IADR4	I/O	
46	IADR5	I/O	
47	Vdd	-	Power supply.
48	IADR6	I/O	
49	IADR7	I/O	
50	IADR8	I/O	
51	IADR9	I/O	Address signal for external expansion memory.
52	IADR10	I/O	
53	IADR11	I/O	
54	IADR12	I/O	
55	Vss	-	GND
56	IADR13	I/O	
57	IADR14	I/O	
58	IADR15	I/O	Address signal for external expansion memory.
59	IADR16	I/O	
60	IADR17	I/O	
61	IADR18	I/O	(MSB)
62	IB0	I/O	(LSB) Data bus I/O for external expansion memory.
63	VDD	-	Power supply.
64	IB1	I/O	
65	IB2	I/O	
66	IB3	I/O	Data bus I/O for external expansion memory.
67	IB4	I/O	
68	IB5	I/O	
69	IB6	I/O	
70	Vss	-	GND

Pin No.	Symbol	I/O	Description
71	IB7	I/O	Data bus I/O for external expansion memory.
72	IB8	I/O	
73	IB9	I/O	
74	IB10	I/O	
75	Vdo	-	Power supply.
76	IB11	I/O	Data bus I/O for external expansion memory.(MSB)
77	IB12	I/O	
78	IB13	I/O	
79	IB14	I/O	
80	IB15	I/O	
81	DRD	O	Read signal for external expansion data memory.
82	DWR	0	Write signal for external expansion data memory.
83	XCSO	0	Chip select signal for external expansion data memory.
84	DADR0	I/O	(LSB)
85	DADR1	I/O	Address signal for external expansion data memory.
86	Vss	-	GND
87	DADR2	I/O	Address signal for external expansion data memory.
88	DADR3	I/O	
89	DADR4	I/O	
90	DADR5	I/O	
91	DADR6	I/O	
92	DADR7	I/O	
93	DADR8	I/O	
94	DADR9	I/O	
95	Vdo	-	Power supply.
96	DADR10	I/O	Address signal for external expansion data memory.(MSB)
97	DADR11	I/O	
98	DADR12	I/O	
99	DADR13	I/O	
100	DADR14	I/O	
101	DADR15	I/O	
102	DB0	I/O	(LSB) Data bus I/O for external expansion data memory.
103	DB1	I/O	
104	Vss	-	GND

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Description
105	DB2	I/O	Data bus I/O for external expansion data memory.(MSB)
106	DB3	I/O	
107	DB4	1/O	
108	DB5	I/O	
109	DB6	I/O	
110	DB7	1/O	
111	SINT/PORT22	I/O	External interrupt input signal/general-purpose I/O port. This pin can be used as a general-purpose I/O port according to the internal registers.
112	DCSO/PORT21	I/O	Chip select for external expansion data memory/general-purpose I/O port. This pin can be used as a general-purpose I/O port according to the internal registers.
113	Vdo	-	Power supply.
114	DCS1/PORT20	I/O	Chip select for external expansion data memory/general-purpose I/O port. These pins can be used as a general-purpose I/O port according to the internal registers.
115	DCS2/PORT19	I/O	
116	DCS3/PORT18	I/O	
117	DCS4/PORT17	1/0	
118	$\overline{\text { DCS5/PORT16 }}$	1/O	
119	PORT15	I/O	General-purpose I/O port.
120	PORT14	1/O	
121	Vss	-	GND
122	PORT13	I/O	General-purpose I/O port.
123	PORT12	1/0	
124	PORT11	1/0	
125	PORT10	1/0	
126	PORT9	1/0	
127	PORT8	1/0	
128	PORT7	I/O	
129	Vdo	-	Power supply.
130	PORT6	1/O	General-purpose I/O port.
131	PORT5	1/0	
132	PORT4	1/0	
133	PORT3	1/0	
134	PORT2	1/0	
135	PORT1	1/0	
136	PORT0	1/0	
137	Vss	-	GND
138	TXD2	0	UART transmission data output (channel 2)

Pin No.	Symbol	I/O	
139	RXD2	I	UART reception data input (channel 2)
140	TXD1	O	UART transmission data output (channel 1)
141	RXD1	I	UART reception data input (channel 1)
142	TXD0	O	UART transmission data output (channel 0)
143	RXD0	I	UART reception data input (channel 0)
144	VDD	-	Power supply.

A/D Converter Characteristics
$\left(\mathrm{AVD}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{Topr}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

Item	Pin	Condition	Min.	Typ.	Max.	Unit
Resolution					8	Bit
Differential linearity error (DLE)		$\mathrm{AVD}=3.0 \mathrm{~V}$	-0.5		+0.5	LSB
Integral linearity error (ILE)			-1.0		+1.0	LSB
Sampling time		$\mathrm{f}=18.414 \mathrm{MHz}$	648			ns
Conversion time			864			ns
Reference input voltage (top)	VRT		VRB		AVD	V
Reference input voltage (bottom)	VRB		0		VRT	V
Analog input voltage	VIN		VRB		VRT	V
Current consumption		$\mathrm{AVD}=3.0 \mathrm{~V}$		2.0		mA

Electrical Characteristics

DC Characteristics
$\left(\mathrm{VDD}=3.0\right.$ to 3.6 V , Topr $=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

Item		Symbol	Condition	Min.	Typ.	Max.	Unit	Applicable pins
Input voltage (1) (CMOS level)	High level	VIH (1)		$0.7 \times \mathrm{VDD}$		Vdd	V	*1
	Low level	VIL (1)				$0.2 \times \mathrm{VDD}$	V	
Input voltage (2) (5V interface)	High level	Vı ${ }^{\text {(2) }}$		$0.7 \times \mathrm{VDD}$		5.5	V	*2
	Low level	VIL (2)				$0.2 \times \mathrm{VDD}$	V	
Output voltage (1)	High level	Vон (1)	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	VDD - 0.4			V	*3
	Low level	Vol (1)	$\mathrm{lol}=4.0 \mathrm{~mA}$			0.4	V	
Output voltage (2)	High level	$\mathrm{VoH}(2)$	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	VDD - 0.8			V	*4
	Low level	Vol (2)	$\mathrm{lol}=4.0 \mathrm{~mA}$			0.4	V	
Output voltage (3)	High level	Voh (3)	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	VDd - 0.8			V	*5
	Low level	Vol (3)	$\mathrm{lol}=8.0 \mathrm{~mA}$			0.4	V	
Current consumption in standby mode		ISTB	$\mathrm{VdD}=3.0 \mathrm{~V}$		20	70	$\mu \mathrm{A}$	-
		ISTB	$V D D=1.8 \mathrm{~V}$		4	50		
Supply current		IDD	$\mathrm{f}=18.414 \mathrm{MHz}$		55		mA	-

Applicable pins

*1 Pins 11, 12, 16, 17, 20, 22 to 24, 32, 41
*2 Pins 62, 64 to 69,71 to 74,76 to $80,84,85,87$ to 94,96 to 103,105 to 112,114 to $120,122,128$, 130 to $136,139,141,143$
*3 Pins 10, 25, 26, 33, 35
*4 Pins 38, 40, 82, 83, 138, 140, 142
*5 Pins $36,37,42$ to 46,48 to 54,56 to 62,64 to 69,71 to 74,76 to $81,84,85,87$ to 94,96 to 103 , 105 to 112,114 to 120,122 to 128,130 to 136

AC Characteristics

When inputting a pulse to the TCXO pin (VdD $=3.0$ to 3.6 V , $\mathrm{Topr}=-40$ to $+85^{\circ} \mathrm{C}$)

When inputting a binary-converted signal

Item	Symbol	Min.	Typ.	Max.	Unit
TCXO clock frequency	fтck	Typ. $-3 p p m$	18.414	Typ. $+3 p p m$	MHz
TCXO clock pulse width	tтн, t тL	10			ns

Battery Backup Mode

The battery backup mode is activated when the power for the GPS receiver is turned off and power-on reset goes to low level. The timer clock continues to operate even when power-on reset goes low, but all other clock are fixed high and the LSI is set to the low power consumption mode. At this time, the RAM data is held and the registers are initialized.
Battery backup mode is canceled by setting power-on reset to high.

CXD2931R Initialization

CXD2931R initialization is started by setting the reset input signal EXRS (Pin 27) to low level. The timing should satisfy the conditions noted below.

1. During power-on (power-on reset) (VDD $=3.0$ to $3.6 \mathrm{~V}, \mathrm{Topr}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

The PWRST (Pin 28) signal should rise simultaneously with the power supply. The EXRS (Pin 27) signal should rise 100 ms or more after the power supply and the PWRST signal have risen. Note that the PWRST signal should be left open during battery backup.
2. Initialization during operation $\left(\mathrm{VDD}=3.0\right.$ to 3.6 V , $\mathrm{Topr}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

The internal registers can be initialized during operation by setting the EXRS (Pin 27) signal to low level for $100 \mu \mathrm{~s}$ or more.
Keep the PWRST (Pin 28) signal at high level at this time.

- External Command Fetch Timing (XROMW = 0)

No.	Item	Min.	Typ.	Max.	Unit
(a)	Read cycle time (Fex: @20MHz)	-	100	-	ns
(b)	Address delay time	-	-	12	ns
(c)	Chip select fall delay time	2	-	10	ns
(d)	Chip select rise delay time	2	-	10	ns
(e)	Read signal fall delay time	0	-	3	ns
(f)	Read signal rise delay time	0	-	5	ns
(g)	Read data setup time	11	-	-	ns
(h)	Read data hold time	0	-	-	ns

* The load capacitance $=30 \mathrm{pF}$.
- External Command Fetch Timing (XROMW = 1)

- External Data Access Timing (ICS0, ICS1/XROMW = 0)
(1) Read (half-word access/XROMW $=0$)

(2) Write (half-word access/XROMW = 0)

No.	Item	Min.	Typ.	Max.	Unit
(a)	Read/write cycle time (Fex: @20MHz)	-	100	-	ns
(b)	Address delay time	-	-	12	ns
(c)	Chip select fall delay time	2	-	10	ns
(d)	Chip select rise delay time	2	-	10	ns
(e)	Read signal fall delay time	0	-	3	ns
(f)	Read signal rise delay time	0	-	5	ns
(g)	Read data setup time	11	-	-	ns
(h)	Read data hold time	0	-	-	ns
(i)	Write signal fall delay time	0	-	1	ns
(j)	Write signal rise delay time	0	-	2	ns
(k)	Write data established time	-	-	5	ns
(I)	Write data hold time	5	-	-	ns

(3) Read (word access/XROMW = 0)

(4) Write (word access/XROMW = 0)

- External Data Access Timing (ICS0, ICS1/XROMW = 1)
(1) Read (half-word access/XROMW = 1)

(2) Write (half-word access/XROMW = 1)

(3) Read (word access/XROMW = 1)

(4) Write (word access/XROMW = 1)

- External Data Access Timing (XCSO, DCSO to 5/no data wait)

(1) Read (byte access/no data wait)

(2) Write (byte access/no data wait)

No.	Item	Min.	Typ.	Max.	Unit
(a)	Read/write cycle time (Fex: @20MHz)	-	100	-	ns
(b)	Address delay time	-	-	12	ns
(c)	Chip select fall delay time	3	-	13	ns
(d)	Chip select rise delay time	3	-	13	ns
(e)	Read signal fall delay time	2	-	8	ns
(f)	Read signal rise delay time	2	-	10	ns
(g)	Read data setup time	16	-	-	ns
(h)	Read data hold time	0	-	-	ns
(i)	Write signal fall delay time	0	-	2	ns
(j)	Write signal rise delay time	0	-	3	ns
(k)	Write data established time	-	-	12	ns
(l)	Write data hold time	5	-	-	ns

* The load capacitance $=30 \mathrm{pF}$.
(3) Read (half-word access/no data wait)

(4) Write (half-word access/no data wait)

(5) Read (word access/no data wait)

(6) Write (word access/no data wait)

- External Data Access Timing (XCS0, DCS0 to 5/data wait =1)
(1) Read (byte access/data wait =1)

(2) Write (byte access/data wait =1)

(3) Read (half-word access/data wait =1)

(4) Write (half-word access/data wait =1)

(5) Read (word access/data wait $=1$)

(6) Write (word access/data wait =1)

- External Data Access Timing (XCS0, DCS0 to 5/data wait = 2)
(1) Read (byte access/data wait =2)

(2) Write (byte access/data wait = 2)

(3) Read (half-word access/data wait $=2$)

(4) Write (half-word access/data wait $=2$)

(5) Read (word access/data wait = 2)

(6) Write (word access/data wait = 2)

Description of Application Circuit

See the Application Circuit when using the CXD2931R to configure a GPS receiver.
Points for caution are as follows.

1. Unused pins

Software processing is performed to prevent undesired current from flowing to unused pins in the circuit diagram, so leave these pins open.
2. TCXO input

The TCXO frequency is $18.414 \mathrm{MHz} \pm 3 \mathrm{ppm}$. Signals that have not been binary-converted should be input with an amplitude of $0.8 \mathrm{Vp}-\mathrm{p}$ or more via a DC filter capacitor (C 19 in the circuit diagram). Input binaryconverted signals directly to Pin 7 (TCXO) without passing through C19 or R1 in the circuit diagram.
Make sure the input level at this time satisfies the Electrical Characteristics.
3. IF input

The CXD2931R interface is 1.023 MHz , and does not accept other frequencies. Signals that have not been binary-converted should be input with an amplitude of $0.8 \mathrm{Vp}-\mathrm{p}$ or more via a DC filter capacitor (C20). Input binary-converted signals directly to Pin 18 (IF0) without passing through C20 or R3 in the circuit diagram. Make sure the input level at this time satisfies the Electrical Characteristics.
4. TXD (SIO output)

The TXD amplitude low level is 0.4 V or less, and the high level is $\mathrm{VDD}-0.4 \mathrm{~V}$ ($\mathrm{VDD}=3.0$ to 3.6 V) or more. When the LSI, etc., connected to TXD operates at 5 V and has a CMOS input level, perform 3 to 5 V conversion before inputting the signal.
5. Real-time clock

The current software version uses an external real-time clock. Consult your Sony representative beforehand when using the internal real-time clock. When using an external real-time clock, connect Pin 13 (CCKI) to GND.

144PIN LQFP (PLASTIC)

SONY CODE	LQFP-144P-L01
EIAJ CODE	LQFP144-P-2020
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM
PLATING	
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	1.3 g

