GPS LSI with Built-in 32-bit RISC CPU

Description

The CXD2930BR is a dedicated LSI for the GPS (Global Positioning System) satellite-based position measurement system. This LSI contains a 32-bit RISC CPU, RAM, UART, timer, etc.
This LSI, used together with an external ROM and RF LSI (CXA1951AQ), enables the configuration of a 3-chip system capable of measuring its position anywhere on the globe.

Features

- 16-channel GPS receiver capable of simultaneously receiving 16 satellites
- Supports DARC system FM multiplexed differential GPS
- All-in-view measurement
- 2-satellite measurement
- Timer supporting GPS time
- High performance 32-bit RISC CPU
- 32K-byte RAM
- 3-channel UART
- Baud rate generator
- Supports 1.2K, 2.4K, 4.8K, 9.6K, 19.2K and 38.4K baud
- Supports 1/2/4-byte buffer mode
- 23-bit general-purpose I/O port capable of defining input/output independently for each bit

Structure

Silicon gate CMOS IC

Recommended Operating Conditions

$\begin{array}{llll}\text { - Supply voltage } & \text { VdD } & 3.0 \text { to } 3.6 & \text { V } \\ \text { - Operating temperature } & \text { Topr } & -40 \text { to }+85 & { }^{\circ} \mathrm{C}\end{array}$

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Performance

- Reception frequency
1575.42MHz (L1 band, CA code)
- Reception sensitivity (using the CXA1951AQ in the RF block)
-130dBm or less
- Time to first fix* (time until initial measurement after power-on)

Cold start (without ephemeris and almanac) 35 to 60s
Warm start (without ephemeris with almanac) 34 to 50s
Hot start (with ephemeris and almanac) 6 to 20s
Reacquisition time (interrupt recovery time)
Less than 5 minutes: <3 to 6 s 5 minutes or more: < 6 to 10s

- Positioning accuracy

Stand alone (GPS unit only)
$1 \sigma:<30 \mathrm{~m}$
36: < 90 m
DGPS (differential GPS)
GPS Receiver System Diagram Using the CXD2930BR
$1 \sigma:<6 m$
$3 \sigma:<18 \mathrm{~m}$

- Measurement data update time

Every 1s

- Communication method

Sony standard serial communication
Supports NMEA

* The noted values may be exceeded depending on the operating environment and other conditions.

The above performance values are as of February 1998. Sony reserves the right to change performance without prior notice. Accordingly, the above performance values should be used only as reference data.

Block Diagram

Pin Configuration

Pin Configuration

Pin No.	Symbol	I/O	
1	AVD	-	A/D converter power supply.
2	AVIN	I	Analog input.
3	VRT	I	Refription
4	VRB	I	
5	AVS	-	A/D converter GND.
6	Vss	I	GND
7	TCXO	I	TCXO binary conversion circuit/crystal oscillator.
8	XTCXO	O	
9	VDD	-	Power supply.
10	OTCXO	O	TCXO clock output.
11	TESTO	I	Test. Fixed to low level.
12	TEST1	I	
13	CCKI	I	Timer oscillation circuit. (32.768kHz \pm 100ppm)
14	CCKO	O	
15	Vss	-	GND
16	INHI	I	Fixed to low level.
17	INLW	I	Fixed to low level.
18	IFO	I	IF signal binary conversion circuit.
19	IFOO	O	
20	IF1	I	IF signal input 1. Input the binary-converted input signal.
21	VDD	-	Power supply.
22	HOLD	I	Hold input signal. Hold when high level.
23	NMI	I	Non maskable interrupt.
24	PMI	I	Power management interrupt.
25	HOLDA	O	Hold acknowledge signal.
26	INBKOR	O	Break signal for debugging.
27	EXRS	I	Reset input signal.
28	PWRST	I	Connect to main power supply. Leave open during backup.
29	Vss	-	GND
30	MCK	I	CPU clock oscillation circuit.
31	$\overline{\text { MCKO }}$	O	
32	COSEL	I	CPU clock select signal. Selects TCXO clock when low level; MCK clock when high level. 33
CLKOUT	O	CPU clock output.	

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Description
34	VdD	-	Power supply.
35	RUN	0	Signal output indicating CPU operating status.
36	$\overline{\text { IWR }}$	\bigcirc	Write signal output for instruction ROM.
37	$\overline{\mathrm{RD}}$	0	Read signal for instruction ROM.
38	$\overline{\text { ICSO }}$	0	Chip select 0 for instruction ROM.
39	Vss	-	GND
40	$\overline{\text { ICS1 }}$	\bigcirc	Chip select 1 for instruction ROM.
41	IADR0	0	(LSB)
42	IADR1	0	
43	IADR2	0	A
44	IADR3	0	Address signal for instruction ROM.
45	IADR4	0	
46	IADR5	0	
47	VdD	-	Power supply.
48	IADR6	0	
49	IADR7	0	
50	IADR8	0	
51	IADR9	0	Address signal for instruction ROM.
52	IADR10	0	
53	IADR11	\bigcirc	
54	IADR12	\bigcirc	
55	Vss	-	GND
56	IADR13	0	
57	IADR14	0	
58	IADR15	0	Address signal for instruction ROM.
59	IADR16	\bigcirc	Address signal for instruction ROM.
60	IADR17	\bigcirc	
61	IADR18	\bigcirc	(MSB)
62	IB0	\bigcirc	(LSB) Data bus I/O for instruction ROM.
63	Vdo	-	Power supply.
64	IB1	I/O	
65	IB2	I/O	
66	IB3	I/O	Data bus I/O for instruction ROM.
67	IB4	I/O	Data bus I/O for instruction ROM.
68	IB5	I/O	
69	IB6	I/O	

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Description
70	Vss	-	GND
71	IB7	I/O	
72	IB8	I/O	
73	IB9	I/O	Data bus I/O for instruction ROM.
74	IB10	I/O	
75	VdD	-	Power supply.
76	IB11	I/O	
77	IB12	I/O	
78	IB13	I/O	Data bus I/O for instruction ROM.
79	IB14	I/O	
80	IB15	I/O	(MSB)
81	$\overline{\text { DRD }}$	\bigcirc	Read signal for external expansion data memory.
82	$\overline{\text { DWR }}$	\bigcirc	Write signal for external expansion data memory.
83	XCSO	O	Chip select signal for external expansion data memory.
84	DADR0	I/O	(LSB)
85	DADR1	I/O	Address I/O for external expansion data memory.
86	Vss	-	GND
87	DADR2	I/O	
88	DADR3	I/O	
89	DADR4	I/O	
90	DADR5	I/O	
91	DADR6	I/O	Address I/O for external expansion data memory.
92	DADR7	I/O	
93	DADR8	I/O	
94	DADR9	I/O	
95	Vdd	-	Power supply.
96	DADR10	I/O	
97	DADR11	I/O	
98	DADR12	I/O	
99	DADR13	I/O	dress I/O for external expansion data memory.
100	DADR14	I/O	Adaress I/O for external expansion data memory.
101	DADR15	I/O	
102	DB0	I/O	
103	DB1	I/O	(MSB)
104	Vss	-	GND

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Description
105	DB2	I/O	(LSB)
106	DB3	I/O	
107	DB4	I/O	
108	DB5	I/O	Data bus I/O for external expansion data memory.
109	DB6	I/O	
110	DB7	I/O	(MSB)
111	SINT/PORT22	I/O	External interrupt input signal/general-purpose I/O port. This pin can be used as a general-purpose I/O port according to the internal registers.
112	$\overline{\text { DCSO/PORT21 }}$	I/O	Chip select for external expansion data memory/general-purpose I/O port. This pin can be used as a general-purpose I/O port according to the internal registers.
113	Vdo	-	Power supply.
114	DCS1/PORT20	I/O	Chip select for external expansion data memory/general-purpose I/O port. These pins can be used as general-purpose I/O ports according to the internal registers.
115	DCS2/PORT19	I/O	
116	$\overline{\text { DCS3/PORT18 }}$	I/O	
117	$\overline{\text { DCS4/PORT17 }}$	I/O	
118	$\overline{\text { DCS5/PORT16 }}$	I/O	
119	PORT15	I/O	General-purpose I/O port.
120	PORT14	I/O	
121	Vss	-	GND
122	PORT13	I/O	General-purpose I/O port.
123	PORT12	I/O	
124	PORT11	I/O	
125	PORT10	I/O	
126	PORT9	I/O	
127	PORT8	I/O	
128	PORT7	I/O	
129	Vdo	-	Power supply.
130	PORT6	I/O	General-purpose I/O port.
131	PORT5	I/O	
132	PORT4	I/O	
133	PORT3	I/O	
134	PORT2	I/O	
135	PORT1	I/O	
136	PORT0	I/O	

Pin No.	Symbol	I/O	Description
137	Vss	-	GND
138	TXD2	O	UART transmission data output (channel 2).
139	RXD2	I	UART reception data input (channel 2).
140	TXD1	O	UART transmission data output (channel 1).
141	RXD1	I	UART reception data input (channel 1).
142	TXD0	O	UART transmission data output (channel 0).
143	RXD0	I	UART reception data input (channel 0).
144	VDD	-	Power supply.

Absolute Maximum Ratings

- Supply voltage
- Input voltage
- Output voltage
- Operating temperature
- Storage temperature

VDD
VI Vss -0.5 to $V_{D D}+5 \quad V$
Vo Vss -0.5 to Vdd +0.5 V
Topr
Tstg
-40 to $+85 \quad{ }^{\circ} \mathrm{C}$
-55 to $+150 \quad{ }^{\circ} \mathrm{C}$

I/O Pin Capacitance

- Input capacitance
- Output capacitance
- I/O capacitance

CIn
Cout
Cl/o

9 (Max.)
pF
11 (Max.) pF
11 (Max.)
pF

Electrical Characteristics

$$
\left(\mathrm{VDD}=3.0 \text { to } 3.6 \mathrm{~V} \text {, } \mathrm{Topr}=-40 \text { to }+85^{\circ} \mathrm{C}\right)
$$

Item		Symbol	Conditions	Min.	Typ.	Max.	Unit	Applicable pins	
Input voltage (1) (CMOS level)	High level	VIH (1)		0.7Vdd		VDD	V	*1	
	Low level	VIL (1)				0.2VDD	V		
Input voltage (2) (5V interface)	High level	VIH (2)		0.7Vdd		5.5	V	*2	
	Low level	VIL (2)				0.2VdD	V		
Output voltage (1)	High level	Vон (1)	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	VDd - 0.4			V	*3	
	Low level	Vol (1)	$\mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V		
Output voltage (2)	High level	$\mathrm{VoH}(2)$	$\mathrm{IOH}=-8.0 \mathrm{~mA}$	Vdd - 0.4			V	*4	
	Low level	Vol (2)	$\mathrm{loL}=8.0 \mathrm{~mA}$			0.4	V		
Output voltage (3)	High level	Vон (3)	$\mathrm{IOH}=-12.0 \mathrm{~mA}$	Vdd - 0.4			V	*5	
	Low level	Vol (3)	$\mathrm{IoL}=12.0 \mathrm{~mA}$			0.4	V		
Current consumption in standby mode		ISTB	$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$		20	70	$\mu \mathrm{A}$		
		$\mathrm{V} D \mathrm{D}=1.5 \mathrm{~V}$		4	50				
Supply current			IDD	$\mathrm{f}=18.414 \mathrm{MHz}$		55		mA	

Applicable pins

*1 Pins 11, 12, 16, 17, 20, 22, 23, 24, 32
*2 Pins 62, 64 to 69,72 to 74,76 to $80,84,85,87$ to 94,96 to 103,105 to 112,114 to 120,122 to 128 , 130 to $136,139,141,143$
*3 Pins $10,25,26,33,35,41$ to 46,48 to 54,56 to 61,81 to $83,138,140,142$
*4 Pins $38,40,62,64$ to 69,71 to 74,76 to $80,84,85,87$ to 94,96 to 103,105 to 112,114 to 120,122 to 128 , 130 to 136
*5 Pins 36, 37

Electrical Characteristics (IF and TCXO binary conversion pins) (VDD $=3.0$ to $3.6 \mathrm{~V}, \mathrm{Topr}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit	Applicable pins
Logical Vth	LVth			Vod/2		V	Pins 7, 18
Input amplitude	VIN	$\mathrm{f}=50 \mathrm{MHz}$, sin wave	0.8			Vp-p	

Electrical Characteristics (Crystal oscillator) (VDD $=3.0$ to 3.6 V , $\mathrm{Topr}=-40$ to $+85^{\circ} \mathrm{C}$)

Item		Symbol	Conditions	Min.	Typ.	Max.	Unit	Applicable pins
Logical Vth		LVth			$\mathrm{VDD} / 2$		V	Pin 30
Input voltage	High level	VIH		0.7 VDD			V	
	Low level	VIL				0.2 VDD	V	
Output voltage	High level	VOH	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\mathrm{VDD} / 2$			V	Pin 31
	Low level	VoL	$\mathrm{IOL}=3 \mathrm{~mA}$			$\mathrm{VDD} / 2$	V	

AC Characteristics

(1) When inputting a pulse to the TCXO pin ($\mathrm{VDD}=3.0$ to 3.6 V , $\mathrm{Topr}=-40$ to $+85^{\circ} \mathrm{C}$)

When inputting a binary-converted signal

Item	Symbol	Min.	Typ.	Max.	Unit
TCXO clock frequency	fтck	Typ. -3 ppm	18.414	Typ. +3 ppm	MHz
TCXO clock pulse width	t тн, t ть	24.5		29.9	ns

When performing binary conversion with the TCXO and XTCXO pins (Pins 7 and 8)

(2) When performing self-oscillation with the CCKI and CCKO pins ($\mathrm{VDD}=3.0$ to 3.6 V , $\mathrm{Topr}=-40$ to $+85^{\circ} \mathrm{C}$)

(3) IF signal input $\left(\mathrm{VDD}=3.0\right.$ to 3.6 V , $\mathrm{Topr}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

(4) When performing self-oscillation with the MCKI and MCKO pins (VDD $=3.0$ to 3.6 V , $\mathrm{Topr}=-40$ to $+85^{\circ} \mathrm{C}$)

Battery Backup Mode

The battery backup mode is activated when the power for the GPS receiver is turned off and power-on reset goes to low level. The timer clock continues to operate even when power-on reset goes low, but all other clocks are fixed high and the LSI is set to the low power consumption mode. At this time, the RAM data is held and the registers are initialized.

Battery backup mode is canceled by setting power-on reset to high.

CXD2930BR Startup and Initialization

The CXD2930BR operation is started by setting the reset input signal EXRS (Pin 30) to high level. The timing should satisfy the conditions noted below.

1. During power-on (power-on reset)

VDD $=3.0$ to 3.6 V , Topr $=-40$ to $+85^{\circ} \mathrm{C}$

The PWRST (Pin 28) signal should rise simultaneously with the power supply. The EXRS (Pin 27) signal should rise 100 ms or more after the power supply and the PWRST signal have risen.
Note that the PWRST signal should be left open during battery backup.

2. Initialization during operation

VDD $=3.0$ to 3.6 V , Topr $=-40$ to $+85^{\circ} \mathrm{C}$

The internal registers can be initialized during operation by setting the EXRS (Pin 27) signal to low level for 100μ s or more.

Keep the PWRST (Pin 28) signal at high level at this time.

External Command Fetch Timing

No.	Item	Min.	Typ.	Max.	Unit
(a)	Read cycle time (Fex: @9.207MHz)	-	108	-	ns
(b)	Address delay time	-	-	5	ns
(c)	Chip select fall delay time	2	-	10	ns
(d)	Chip select rise delay time	2	-	9	ns
(e)	Read signal fall delay time	1	-	3	ns
(f)	Read signal rise delay time	1	-	5	ns
(g)	Read data setup time	8	-	-	ns
(h)	Read data hold time	0	-	-	ns

External Data Access Timing (ICS0, ISC1)
(1) Read (half-word access)

(2) Write (half-word access)

No.	Item	Min.	Typ.	Max.	Unit
(a)	Read/write cycle time (Fex: @9.207MHz)	-	108	-	ns
(b)	Address delay time	-	-	5	ns
(c)	Chip select fall delay time	2	-	10	ns
(d)	Chip select rise delay time	2	-	9	ns
(e)	Read signal fall delay time	1	-	3	ns
(f)	Read signal rise delay time	1	-	5	ns
(g)	Read data setup time	8	-	-	ns
(h)	Read data hold time	0	-	-	ns
(i)	Write signal fall delay time	0	-	1	ns
(j)	Write signal rise delay time	0	-	2	ns
(k)	Write data established time	-	-	5	ns
(l)	Write data hold time	5	-	-	ns

(3) Read (word access)

(4) Write (word access)

External Data Access Timing (XCSO, DCSO to 5, no data wait)
(1) Read (byte access, no data wait)

(2) Write (byte access, no data wait)

No.	Item	Min.	Typ.	Max.	Unit
(a)	Read/write cycle time (Fex: @9.207MHz)	-	108	-	ns
(b)	Address delay time	-	-	9	ns
(c)	Chip select fall delay time	4	-	13	ns
(d)	Chip select rise delay time	4	-	13	ns
(e)	Read signal fall delay time	2	-	8	ns
(f)	Read signal rise delay time	3	-	10	ns
(g)	Read data setup time	16	-	-	ns
(h)	Read data hold time	0	-	-	ns
(i)	Write signal fall delay time	0	-	1	ns
(j)	Write signal rise delay time	0	-	2	ns
(k)	Write data established time	-	-	7	ns
(l)	Write data hold time	5	-	-	ns

(3) Read (half-word access, no data wait)

(4) Write (half-word access, no data wait)

(5) Read (word access, no data wait)

(6) Write (word access, no data wait)

External Data Access Timing (XCSO, DCSO to 5, with data wait)
(1) Read (byte access, with data wait)

(2) Write (byte access, with data wait)

(3) Read (half-word access, with data wait)

(4) Write (half-word access, with data wait)

(5) Read (word access, with data wait)

(6) Write (word access, with data wait)

Description of Application Circuit

See the Application Circuit when using the CXD2930BR to configure a GPS receiver. Points for caution are as follows.

1. Unused pins

Software processing is performed to prevent undesired current from flowing to unused pins in the circuit diagram, so leave these pins open.

2. TCXO input

The TCXO frequency is $18.414 \mathrm{MHz} \pm 3 \mathrm{ppm}$. Signals that have not been binary-converted should be input with an amplitude of $0.8 \mathrm{Vp}-\mathrm{p}$ or more via a DC filter capacitor (C 19 in the circuit diagram). Input binaryconverted signals directly to Pin 7 (TCXO) without passing through C19 or R1 in the circuit diagram. Make sure the input level at this time satisfies the Electrical Characteristics.
3. IF input

The CXD2930BR interface is 1.023 MHz , and does not accept other frequencies. Signals that have not been binary-converted should be input with an amplitude of $0.8 \mathrm{Vp}-\mathrm{p}$ or more via a DC filter capacitor (C20). Input binary-converted signals directly to Pin 18 (IF0) without passing through C20 or R3 in the circuit diagram. Make sure the input level at this time satisfies the Electrical Characteristics.
4. TXD (SIO output)

The TXD amplitude low level is 0.4 V or less, and the high level is $\mathrm{V} D \mathrm{D}-0.4 \mathrm{~V}(\mathrm{VDD}=3.0$ to 3.6 V) or more. When the LSI, etc., connected to TXD operates at 5 V and has a CMOS input level, perform 3 to 5 V conversion before inputting the signal.

5. Real-time clock

The current software version uses an external real-time clock. Consult your Sony representative beforehand when using the internal real-time clock. When using an external real-time clock, connect Pin 13 (CCKI) to GND.
6. External program ROM

Use a 2 M - or 4M-bit external program ROM (IC2) with an access time of 100 ns or less and which is capable of 16 -bit read.
Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for

144PIN LQFP (PLASTIC)

DETAIL A

SONY CODE	LQFP-144P-L01
EIAJ CODE	LQFP144-P-2020
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	1.3 g

