Timing Generator for Progressive Scan CCD Image Sensor

Description

The CXD2460R is an IC developed to generate the timing pulses required by Progressive Scan CCD image sensors as well as signal processing circuits.

Features

- Electronic shutter function
- Supports non-interlaced operation
- Base oscillation frequency 28.636 MHz
- Horizontal drive frequency switchable between $14.3 / 7.2 \mathrm{MHz}$
- Switchable between FINE (Progressive Scan) mode or DRAFT (high-speed draft) mode
- Built-in vertical driver

Applications

Progressive Scan CCD cameras

Structure

Silicon gate CMOS IC

Applicable CCD Image Sensor

ICX205AK

Absolute Maximum Ratings

- Supply voltage Vdda, Vddb, Vddc, Vddd Vss - 0.5 to Vss +7.0 V
- Supply voltage Vss VL-0.5 to VL + 26.0 V
- Supply voltage VH VL-0.5 to VL + 26.0 V
- Supply voltage VM VL-0.5 to VL + 26.0 V
- Input voltage VI Vss - 0.5 to Vdda,b,c,d+0.5 V
- Output voltage Vo Vss - 0.5 to Vdda,b,c,d+0.5 V
- Operating temperature

Topr $\quad-20$ to $+75 \quad{ }^{\circ} \mathrm{C}$

- Storage temperature

Tstg $\quad-55$ to $+150 \quad{ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

- Supply voltage 1 Vdda, Vddb, Vddd
- Supply voltage 2 VDDC 3.0 to 5.25 V
- Supply voltage 3 VH 14.25 to 15.75 V
- Supply voltage $4 \mathrm{VL} \quad-9.0$ to -5.0 V
- Supply voltage 5 VM V
- Operating temperature

Topr $\quad-20$ to $+75 \quad{ }^{\circ} \mathrm{C}$

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

XSGA and XSGB are readout pulses that use V2A and V2B, respectively, as the VH value.

Pin Configuration (Top View)

Pin Description

Pin No.	Symbol	I/O	
1	CKO	O	Oscillator output. (28.6MHz)
2	Vss0	-	GND
3	CKI	I	Oscillator input. (28.6MHz)
4	OSCO	O	Inverter output for oscillation. (28.6MHz)
5	OSCI	I	Inverter input for oscillation. (28.6MHz)
6	VDD0	-	Power supply.
7	TEST1	I	Test. With pull-down resistor. Fix to low.
8	AVD0	-	Power supply.
9	RG	O	Reset gate pulse output.
10	Vss1	-	GND
11	Vss2	-	GND
12	H1	O	Clock output for horizontal CCD drive.
13	H2	O	Clock output for horizontal CCD drive.
14	AVD1	-	Power supply.
15	XCPDM	O	Clamp pulse.
16	AVD2	-	Power supply.
17	XSHP	O	Sample-and-hold pulse.
18	XSHD	O	Sample-and-hold pulse.
19	XRS	O	Sample-and-hold pulse.
20	Vss3	-	GND
21	PBLK	O	Blanking cleaning pulse.
22	XCPOB	O	Clamp pulse.
23	ADCLK	O	Clock output for AD conversion.
24	RST	I	Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on.
25	MCK	O	Clock output for digital circuit.
26	VDD1	-	Power supply.
27	$2 M C K$	O	Clock output for digital circuit.
28	TEST2	I	Test. Fix to high.
29	SEN	I	PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input.
30	SSK	I	PS = High: Readout method setting input. PS $=$ Low: Serial setting clock input.
31	SSI	I	PS = High: Shutter speed setting input. PS = Low: Serial setting data input.
32	EXP	O	Line identification signal output write enable pulse output or XSUB output.

Pin No.	Symbol	I/O	
34	HRO	O	Hoscrizontal sync signal (HR) output or XSGA output.
35	FRO	O	Vertical sync signal (FR) output or XSGB output.
36	Vss4	-	GND
37	HRI	I	Horizontal sync signal (HR) input.
38	FRI	I	Vertical sync signal (FR) input.
39	VM	-	GND (vertical clock driver GND).
40	V1	O	Clock output for vertical CCD drive.
41	V3	O	Clock output for vertical CCD drive.
42	V2A	O	Clock output for vertical CCD drive.
43	VH	-	15V power supply (vertical clock driver power supply).
44	V2B	O	Clock output for vertical CCD drive.
45	SUB	O	CCD electric charge sweep pulse output.
46	VL	-	-8.0V power supply (vertical clock driver power supply).
47	DSGAT	I	Output stop (Same operation control as SLP when low).
48	PS	I	Parallel/serial switching for mode setting input method. (High: Parallel, Low: Serial) With pull-down resistor.

Electrical Characteristics

DC Characteristics

(Within the recommended operating conditions)

Item	Pins	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage 1	Vdd0, Vdd1,	Voda		3.0	3.3	3.6	V
Supply voltage 2	AVD0	Vddb		3.0	3.3	3.6	V
Supply voltage 3	AVD1	Vddc		3.0	5.0	5.25	V
Supply voltage 4	AVD2	Vodd		3.0	3.3	3.6	V
Supply voltage 5	VH	VH		14.5	15.0	15.5	V
Supply voltage 6	VM	VM		-	0.0	-	V
Supply voltage 7	VL	VL		-9.0		-5.0	V
Input voltage 1	CKI	VIH1		0.7Vdda			V
		VIL1				0.3 V doa	V
Input voltage 2	TEST1, PS	VIH2		0.7Vdda			V
		VIL2				0.3 V dda	V
Input voltage 3	RST, TEST2, SEN, SSK, SSI, HRI, FRI, DSGAT	V_{t+1}		0.8Vdda			V
		$\mathrm{V}_{\mathrm{t}-1}$				0.2Vdda	V
Output voltage 1	CKO, MCK,2MCK	Voh1	Feed current where $\mathrm{lOH}=-10.0 \mathrm{~mA}$	Vdda - 0.8			V
		Vol1	Pull-in current where lol $=7.2 \mathrm{~mA}$			0.4	V
Output voltage 2	RG	Voh2	Feed current where $\mathrm{IoH}=-3.3 \mathrm{~mA}$	Vddb - 0.8			V
		Vol2	Pull-in current where lol $=2.4 \mathrm{~mA}$			0.4	V
Output voltage 3	$\mathrm{H} 1, \mathrm{H} 2$	Voh3	Feed current where $1 \mathrm{OH}=-36.0 \mathrm{~mA}$	Vddc - 0.8			V
		Vol3	Pull-in current where lot $=24.0 \mathrm{~mA}$			0.4	V
Output voltage 4	XCPDM, XSHP, XSHD, XRS, PBLK, XCPOB	Voh4	Feed current where $\mathrm{loH}=-3.3 \mathrm{~mA}$	Vddd - 0.8			V
		Vol4	Pull-in current where lol $=2.4 \mathrm{~mA}$			0.4	V
Output voltage 5	$\begin{aligned} & \text { ID, EXP, HRO, } \\ & \text { FRO } \end{aligned}$	Voh5	Feed current where $\mathrm{loH}=-2.4 \mathrm{~mA}$	Vdda - 0.8			V
		VoL5	Pull-in current where lol $=4.8 \mathrm{~mA}$			0.4	V
Output voltage 6	SUB	Voh6	Feed current where $\mathrm{IOH}=-4.0 \mathrm{~mA}$	$\mathrm{VH}-0.25$			V
		Vol6	Pull-in current where lol $=5.4 \mathrm{~mA}$			$\mathrm{VL}+0.25$	V
Output voltage 7	V1, V3	Vom7	Feed current where $\mathrm{IoH}=-5.0 \mathrm{~mA}$	VM - 0.25			V
		Vol7	Pull-in current where lol $=10.0 \mathrm{~mA}$			$\mathrm{VL}+0.25$	V
Output voltage 8	V2A, V2B	Vom101	Feed current where $\mathrm{loH}=-7.2 \mathrm{~mA}$	$\mathrm{VH}-0.25$			V
		Vom102	Pull-in current where lol $=5.0 \mathrm{~mA}$			$\mathrm{VM}+0.25$	V
		Vol8	Feed current where $1 \mathrm{loH}=-5.0 \mathrm{~mA}$	VM - 0.25			V
		Vol8	Pull-in current where lol $=10.0 \mathrm{~mA}$			$\mathrm{VL}+0.25$	V

Inverter I/O Characteristics for Oscillation

Item	Pins	Symbol	Conditions	Min.	Typ.	Max.	Unit
Logical Vth	OSCI	LVth			Vdda/2		V
Input voltage	OSCl	VIH		0.7Vdda			V
		VIL				0.3Vdda	V
Output voltage	OSCO	Voh	Feed current where $\mathrm{loH}=-6.0 \mathrm{~mA}$	Voda/2			V
		Vol	Pull-in current where lol $=6.0 \mathrm{~mA}$			Voda/2	V
Feedback resistor	OSCI, OSCO	RFB	VIN = Vdda or Vss	500k	2M	5M	Ω
Oscillator frequency	OSCI, OSCO	f		20		50	MHz

Base Oscillation Clock Input Characteristics
(Within the recommended operating conditions)

Item	Pins	Symbol	Conditions	Min.	Typ.	Max.	Unit
Logical Vth	CKI	LVth			Vdda/2		V
Input voltage		VIH		0.7Vdda			V
		VIL				0.3Vdda	V
Input amplitude		Vin	fmax 50 MHz sine wave	0.3			Vp-p

*1 Input voltage is the input voltage characteristics for direct input from an external source. Input amplitude is the input amplitude characteristics for input through capacitor.

Switching Characteristics
$(\mathrm{VH}=15.0 \mathrm{~V}, \mathrm{VM}=\mathrm{GND}, \mathrm{VL}=-8.5 \mathrm{~V})$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Rise time	TTLM	VL to VM		350	550	ns
	TTMH	VM to VH		450	700	ns
	TTLH	VL to VH		50	80	ns
Fall time	TTML	VM to VL		250	400	ns
	TTHM	VH to VM		300	450	ns
	TTHL	VH to VL		50	80	ns
Output noise voltage	VCLH				1.0	V
	VCLL				1.0	V
	VCMH				1.0	V
	VCML				1.0	V

*1 The MOS structure of this IC has a low tolerance for static electricity, so full care should be given for measures to prevent electrostatic discharge.
*2 For noise and latch-up countermeasures, be sure to connect a bypass capacitor ($0.1 \mu \mathrm{~F}$ or more) between each power supply pin (VH, VL) and GND.

Switching Waveforms

Waveform Noise

Measurement Circuit

AC Characteristics

1) AC characteristics between the serial interface clocks

(Within the recommended operating conditions)

Symbol	Definition	Min.	Typ.	Max.	Unit
ts1	SSI setup time, activated by the rising edge of SSK	20			ns
th1	SSI hold time, activated by the rising edge of SSK	20			ns
ts2	SSK setup time, activated by the rising edge of SEN	20			ns
th2	SSK hold time, activated by the rising edge of SEN	20			ns
ts3	SEN setup time, activated by the rising edge of SSK	20			ns
fk	SSK frequency			7.15	MHz

2) Serial interface clock internal loading characteristics

3) Output timing characteristics using DSGAT and RST

H 1 and H 2 load $=270 \mathrm{pF}$
EXP, XCPDM, PBLK, XSHP, XSHD, XRS and RG load = 10pF (Within the recommended operating conditions)

Symbol	Definition	Min.	Typ.	Max.	Unit
tpRST	Time until the above outputs reach the specified value after the fall of DSGAT and RST			125	ns
twRST	RST and DSGAT pulse width	10			ns

4) FRI and HRI loading characteristics

MCK load $=35 \mathrm{pF}$
(Within the recommended operating conditions)

Symbol	Definition	Min.	Typ.	Max.	Unit
tsSYNC	FRI and HRI setup time, activated by the rising edge of MCK	5			ns
thSYNC	FRI and HRI hold time, activated by the rising edge of MCK	5			ns

5) Output variation characteristics of ID, WEN, EXP, FRO and HRO

EXP, ID and WEN load = 10pF
(Within the recommended operating conditions)

Symbol	Definition	Min.	Typ.	Max.	Unit
tpdEXP	Time until the WEN, ID and EXP outputs change after the fall of MCK	0.5		8.5	ns
tpdSYNCO	Time until the FRO and HRO outputs change after the fall of MCK	0.5		3.5	ns

Description of Operation

1. Progressive Scan CCD drive pulse generation

- Combining this IC with a crystal oscillator generates a fundamental frequency of 28.636 MHz .
- CCD drive pulse generation is synchronized with HRI and FRI.
- The CCD drive method can be changed to various modes by inputting serial data or parallel data to the CXD2460R.
- The various drive methods possessed by the CXD2460R are shown in the Timing Charts A-1 to 3 (V rate) and $\mathrm{B}-1$ to 6 (H rate).

2. Serial data input method

- All CXD2460R operations can be controlled via the serial data. The serial data format is as follows.

Serial data

Data	Symbol	Function	When reset	
D00 to D07	CHIP	Chip switching	See D00 to D07 CHIP.	All 0
D08 to D11	CTGRY	Category switching	See D08 to D11 CTGRY.	All 0
D12 to D39	DATA	Control data for each category The meaning of this CTGRY control data differs according to the category set by D08 to D11.	See D12 to D39 DATA.	All 0
D40 to D47	Checksum bits	Checksum bits	See D40 to D47 CHKSUM.	All 0

3. Serial data and description of functions

	Detailed description		
D00	The serial interface data is loaded to the CXD2460R when D00 and D07 are "1". However, this assumes that D40 to D47 CHKSUM is satisfied.		
D07	D07 D06 D05 D04	D03 D02 D01 D00	Function
CHIP	$1 \begin{array}{llll}1 & 0 & 0 & \end{array}$	$0 \quad 0 \quad 0 \quad 1$	Loading to the CXD2460R
D08	This CTGRY data indicates the functions that the serial interface data controls.		
	D11 D10 D09 D08	Function	
	00000	Mode control data	
D11	$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	Electronic shutter control data	
CTGRY	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	High-speed phase adjustment data (Set all of D12 to D39 to "0".)	
	$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	System setting data	
	Input of values other than those listed above is prohibited.		

CTGRY: Mode control data

	Detailed description
$\begin{array}{\|l\|} \hline \text { D12 } \\ \text { FHIGH } \end{array}$	0 : Power saving drive mode 1: High-speed drive mode When FHIGH $=0$, the clock input to CKI is immediately frequency divided by $1 / 2$ and loaded internally. The high-speed phases of H1, H2, RG, XSHP, XSHD, XRS, ADCLK and other pulses are always logically the same phase with respect to MCK.
	0 : DRAFT mode 1: FINE mode
D13 FINE	In FINE mode, image data is taken by the normal Progressive Scan method. In DRAFT mode, image data is taken by pulse elimination readout. This enables a frame rate four times that during FINE mode. The mode is switched at the fall of HRI just before XSGA. Note that the FRO output is also switched accordingly. (DRAFT mode: 267H, FINE mode: 1068H)
	0 : Normal operation 1: Readout prohibited mode
D14 NSG	In readout prohibited mode, a readout pulse is not added even at the timing when a readout pulse is added to V 2 A and V 2 B (VH value). ($\mathrm{V} 1, \mathrm{~V} 2$ and V 3 are not modulated.) The mode is normally switched at the fall of HRI just before the position where the readout pulse is added.

	Detailed description
D15	0: Normal operation 1: FS mode In order to increase the frame rate, a certain portion of the captured image of CCD can be cut out by performing high-speed sweep. In FS mode, high-speed sweep is performed for the V registers of the entire image (period Z) after FRI input. Next, high-speed sweep is performed again for only the desired period (period X) after generating the XSGA/XSGB pulses. Then, after performing normal V transfer and outputting the effective signal (period Y), high-speed sweep is performed for the entire image again by inputting FRI at the desired timing. This makes it possible to take only the desired portion in the V direction, thus effectively increasing the frame rate. Operation is fixed during period Z, with 20 lines swept every 1 H and repeating over a 69 H period. During period X, first XSGA/XSGB are generated. These pulses are dependent on serial data FINE. In other words, if FINE $=1$, then both XSGA and XSGB are generated, while if FINE $=0$, only XSGA is generated. Next, sweep operation starts. This period is set in serial data FVFS (system setting data: D21 to D26) in HRI units. If FINE = 1, sweeping is performed at 8 lines per 1 H , and if $\mathrm{FINE}=0$, sweeping is performed at 20 lines per 1 H . The operations of V 1 , V 2 and V 3 after readout during period Y differ depending on the FINE data.
FS	
D16 to D17	Set to "0".

	Detailed descriptionOperation control settings The operating mode control bits are loaded to the CXD2460R at the rise timing of the SEN input, and control is applied immediately.			
D19 D18 Symbol Control mode 0 0 CAM Normal operation mode 0 1 SLP Sleep mode (mode for the status where CCD drive is not required) 1 X STN Standby mode				

Pin status during operation control

	Pin No.	Symbol	CAM	SLP	STN	RST*	Pin No.	Symbol	CAM	SLP	STN	RST*
	1	CKO	ACT	ACT	ACT	ACT	25	MCK	ACT	ACT	ACT	ACT
	2	Vss0	-	-	-	-	26	Vdo1	-	-	-	-
	3	CKI	ACT	ACT	ACT	ACT	27	2MCK	ACT	ACT	ACT	ACT
	4	OSCO	ACT	ACT	ACT	ACT	28	TEST2	-	-	-	-
	5	OSCI	ACT	ACT	ACT	ACT	29	SEN	ACT	ACT	-	-
	6	Vdo0	-	-	-	-	30	SSK	ACT	ACT	-	-
	7	TEST1	-	-	-	-	31	SSI	ACT	ACT	-	-
D17	8	AVD0	-	-	-	-	32	ID	ACT	L	L	L
10	9	RG	ACT	L	L	L	33	EXP	ACT	L	L	L
STB	10	Vss1	-	-	-	-	34	HRO	ACT	ACT	L	L
	11	Vss2	-	-	-	-	35	FRO	ACT	ACT	L	L
	12	H1	ACT	L	L	L	36	Vss4	-	-	-	-
	13	H2	ACT	L	L	L	37	HRI	ACT	ACT	-	-
	14	AVD1	-	-	-	-	38	FRI	ACT	ACT	-	-
	15	XCPDM	ACT	L	L	L	39	VM	-	-	-	-
	16	AVD2	-	-	-	-	40	V1	ACT	VM	VM	VM
	17	XSHP	ACT	L	L	L	41	V3	ACT	VM	VM	VM
	18	XSHD	ACT	L	L	L	42	V2A	ACT	VH	VH	VH
	19	XRS	ACT	L	L	L	43	VH	-	-	-	-
	20	Vss3	-	-	-	-	44	V2B	ACT	VH	VH	VH
	21	PBLK	ACT	L	L	L	45	SUB	ACT	VH	VH	VH
	22	XCPOB	ACT	L	L	L	46	VL	-	-	-	-
	23	ADCLK	ACT	L	L	L	47	DSGAT	ACT	ACT	L	L
	24	RST	ACT	ACT	ACT	ACT	48	PS	ACT	ACT	ACT	ACT

* See "6. RST pulse" for a detailed description of RST.

Note) ACT indicates circuit operation, and L indicates "low" output level in the controlled status. For sleep mode or standby mode, stop supplying VH and VL power supplies with CCD image sensor.

	Detailed description						
$\begin{array}{\|c\|} \hline \text { D20 } \\ \text { EXPXEN } \end{array}$	0 : The EXP pulse indicating the exposure period is generated (when PS = low). 1: The EXP pulse indicating the exposure period is not generated (when PS = low), and is constantly fixed to low. This bit is invalid when STATUS $=1$. Note that the STB setting has priority.						
$\begin{array}{\|c\|} \hline \text { D21 } \\ \text { to } \\ \hline \text { D24 } \end{array}$	Invalid data						
D25 to D29	Low-speed electronic shutter setting. The value set here is the number of FR during which readout operation is not performed even if there is input. The setting range is from " 0 " to " 31 ". When set to " 0 ", readout operation is performed at the first FR. When $F S=1$, this bit is invalid.						
VSHUT	MSB LSB D29 D28 D27 D26 D25			Function Number of FR during which readout operation is not performed			
D30	Invalid data						
to							
D39							

CXD2460R clock system

When using a 28.636 MHz crystal

	FHIGH	FINE	MCK frequency	2 MCK pin output	Frame rate	
Mode1	1	1	14.3 MHz	28.6 MHz	7.5 Frame/s	Basic
Mode2	1	0	14.3 MHz	28.6 MHz	30 Frame/s	DRAFT
Mode3	0	0	7.2 MHz	14.3 MHz	15 Frame $/ \mathrm{s}$	Power-save

Note) Combinations of FHIGH and FINE other than those listed above are prohibited.

CTGRY: Electronic shutter control data

High-speed and low-speed electronic shutter can be used together. Therefore, the exposure time is as follows:

FR cycle \times VSHUT $+(\mathrm{fv}-\mathrm{HSHUT}) \times$ HR cycle $+634 / \mathrm{MCK}$ frequency $[\mathrm{Hz}]=$ Exposure time $[\mathrm{s}]$
(fv: Number of HR in 1FR)

CTGRY: System setting data

	Detailed description
$\begin{array}{\|c\|} \hline \text { D12 } \\ \text { SGXEN } \end{array}$	0: Internal SSG (Sync Signal Generator) functions operate to generate FRO and HRO. 1: Internal SSG functions are stopped, and the FRO and HRO pulses are fixed to low. Note that the STB setting has priority. Set SGXEN to "1" in the case of input of a CXD2460R sync signal from the outside.
D13 EXSG	0: Normal operation 1: XSGA and XSGB are output from the HRO and FRO pins. Note that the output pulse amplitude is Vss to Vdda.
D14 to D15 IDSEL	These bits select the pulse output from the ID pin. XSUB: Inverted SUB pulse output at the amplitude of Vss to Voda
$\begin{array}{\|c\|} \hline \text { D16 } \\ \hline \text { VTXEN } \end{array}$	0 : VT (readout clock) is added to V2A, V2B and V3 as normal. 1: VT is not added to V2A, V2B and V3. During readout, only the modulation necessary for readout is performed. Note that this setting has priority over mode control data NSG (D14).
$\begin{array}{\|l\|} \hline \text { D17 } \\ \hline \end{array}$ CHKSUM	0 : Checksum is not performed and the checksum data is invalid. (However, dummy data must be set in the CHKSUM register.) 1: Checksum is performed. This data is reflected even if the checksum results are NG.
D18 STATUS	0 : The EXP pulse is output from the EXP pin. 1: High is indicated if the checksum results from the EXP pin are OK, and low if the results are NG. This pulse is output at the rise of SEN, and reset high again at the fall of SEN. This pulse has priority over mode control data EXP.
D19 to D22	Input "0".
D23 to D29 FVFS	These bits set the high-speed sweep period (unit: H) in FS mode. The high-speed sweep is perfomed for 8 lines for every 1 H when FINE $=1$, and 20 lines for every 1 H when $\mathrm{FINE}=0$.

	Detailed description
D30 0: Normal operation XVCK 1: V1, V2 and V3 are inverted and output as XV1, XV2 and XV3. The amplitude is from VL to VM. D31 to Invalid data D39	

CHKSUM

4. Shutter speed setting specifications when $P S=H$

When $\mathrm{PS}=\mathrm{H}$, the CXD2460R can be controlled without inputting serial data by using the SEN, SSK and SSI pins.

Pin		When L		When H
SEN	FHIGH (horizontal drive frequency)	Serial register FHIGH = 0.	Serial register FHIGH $=1$.	

Other registers hold the value input when $\mathrm{PS}=\mathrm{L}$, and assume the status indicated by STB when the RST pulse is input.

5. Reflection position of each data

Each serial data is reflected at the timing shown in the table below. The reflection position is the same when $\mathrm{PS}=\mathrm{H}$. When using the low-speed electronic shutter, the data is not reflected at FR where XSG is not generated (a readout pulse is not added to V2A).

Table 5-1. Serial data reflection timing

Data	Reflection position
Mode control data (STB)	SEN rise
Mode control data (EXPXEN)	XSGA pulse rise
Mode control data (other than STB and EXPXEN)	$\mathrm{HRI}^{* 1}$ fall just before XSGA pulse generation
Electronic shutter control data	$\mathrm{HRI}^{* 2}$ fall just after XSGA pulse generation
High-speed phase adjustment data	$\mathrm{HRI}^{* 1}$ fall just before XSGA pulse generation
System setting data (SGXEN)	SEN rise
System setting data (other than SGXEN)	$\mathrm{HRI}^{* 2}$ fall just before XSGA pulse generation

${ }^{*}{ }^{1}$ For FS mode, 7HRI later from FRI fall.
*2 For FS mode, 8HRI later from FRI fall.

6. RST pulse

Setting Pin 30 to low resets the system. The serial data values after reset are as shown in the "Serial data" table.
Also, some internal circuits stop operating when $R S T=L$. For a description of the pin status when RST $=L$, see the "Pin status during operation control" table given in the detailed description of STB under "3. Serial data and description of functions".

7. DSGAT

DSGAT is ON when low and the CXD2460R is set to sleep mode as with SLP of STB.
Note that control is applied when either or both of DSGAT and SLP are ON. Also, when STN is ON, the CXD2460R is set to standby mode regardless of the DSGAT status.

8. EXP pulse

The EXP pulse indicates the exposure period.
The details are shown on the following pages.
(1) HSHUT \geq MAX

(2) HSHUT \geq MAX (with low-speed electronic shutter)

(3) $1 \leq$ HSHUT $<$ MAX

Numbers in parentheses are for FS mode.
(4) $1 \leq$ HSHUT < MAX (with low-speed electronic shutter)

(5) $\mathrm{HSHUT}=0$

(6) $\mathrm{HSHUT}=0$ (with low-speed electronic shutter)

Numbers in parentheses are for FS mode.
Chart A-1. FINE Mode (Vertical synchronization)

Chart A－2．DRAFT Mode（Vertical synchronization）

	TITITITTTTTTTTTTTTTTTTT
Ш川いいい	いいいい
wen $\square \square \square$	
DRatr mode	

Chart A-3. FS Mode (Vertical synchronization)

Chart B-1. FINE Mode (Horizontal synchronization)

Chart B-2. DRAFT Mode (Horizontal synchronization)

Chart B-3. Readout Timing (FINE mode)

Chart B-4. Readout Timing (DRAFT mode)

寽
XV1
XV2A/B
$\stackrel{\infty}{\times}$

OW
On
\times
$ラ \underset{\sim}{\infty} \stackrel{\infty}{\sim}$
줄
Chart B-5. FS Mode: V clock continuous drive (FINE = 1)

Chart B-6. FS Mode: V clock continuous drive (FINE = 0)

Logical Phase

Application Circuit

For making FR and HR outside the CXD2460R, configure a circuit that counts MCK. (Using 2MCK, CKO, etc. is not recommended.) Also, set system setting data, SGXEN (D12) to "1" and stop a built-in SSG.
Use crystal oscillator (fundamental wave) as base oscillation. Be sure to input duty 50% pulse when crystal oscillator is used.

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Notes on Turning Power ON

To avoid setting VSUB pin of the CCD image sensor negative potential, the former two power supplies should be raised by the following order among three power supplies, VL and VH.

48PIN LQFP (PLASTIC)

SONY CODE	LQFP-48P-L01
EIAJ CODE	LQFP048-P-0707
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUMPLATING
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	0.2 g

