8-bit 20MSPS Video A/D Converter (CMOS)

Description

The CXD1175A is an 8 -bit CMOS A/D converter for video use. The adoption of a 2-step parallel system achieves low consumption at a maximum conversion speed of 20MSPS minimum, 35MSPS typical.

Features

- Resolution: 8 bit $\pm 1 / 2$ LSB (DL)
- Maximum sampling frequency: 20MSPS
- Low power consumption: 60mW (at 20MSPS typ.) (reference current excluded)
- Built-in sampling and hold circuit
- Built-in reference voltage self-bias circuit
- 3-state TTL compatible output
- Power supply: 5V single
- Low input capacitance: 11pF
- Reference impedance: 300Ω (typ.)

Applications

TV, VCR digital systems and a wide range of fields where high speed A / D conversion is required.

Structure

Silicon gate CMOS monolithic IC

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage VdD 7
- Reference voltage $\mathrm{V}_{\mathrm{Rt}}, \mathrm{Vrb} \mathrm{VdD}+0.5$ to $\mathrm{Vss}-0.5 \mathrm{~V}$
- Input voltage Vin VdD +0.5 to Vss -0.5 V (Analog)
- Input voltage \quad VI \quad VDD +0.5 to Vss -0.5 V
(Digital)
- Output voltage Vo VDD +0.5 to Vss -0.5 V (Digital)
- Storage temperature

$$
\text { Tstg } \quad-55 \text { to }+150 \quad{ }^{\circ} \mathrm{C}
$$

Recommended Operating Conditions

- Supply voltage	AVdd, AVss 4.75 to 5.25		V
	DVdd, DVss		
		Vss \| 0 to 100	mV
- Reference input voltage			
	Vrb	0 and above	V
	Vrt	2.8 and below	V
- Analog input	VIN	1.8Vp-p above	
- Clock pulse width			

TPW1, TPWo $23 \mathrm{~ns}(\min)$ to $1.1 \mu \mathrm{~s}$ (max)

- Operating ambient temperature
Topr $\quad-40$ to $+85 \quad{ }^{\circ} \mathrm{C}$

Block Diagram and Pin Configuration

Pin Description and Equivalent Circuits

No.	Symbol	Equivalent circuit	Description
1	$\overline{\mathrm{OE}}$		When $\overline{\mathrm{OE}}=$ Low, Data is output. When $\overline{O E}=$ High, D0 to D7 pins turn to High impedance.
2, 24	DVss		Digital ground
3 to 10	D0 to D7		D0 (LSB) to D7 (MSB) output
11, 13	DVdo		Digital +5 V
12	CLK		Clock input
16	VRTS		Shorted with VRT generates, +2.6V
17	VRT		Reference voltage (Top)
23	VRB		Reference voltage (Bottom)
14, 15, 18	AVdD		Analog +5V
19	VIn	(19)	Analog input
20, 21	AVss		Analog GND
22	VRBS		Shorted with VRB generates +0.6 V .

Digital output

Compatibility between analog input voltage and the digital output code is indicated in the chart below.

Input signal voltage	Step	Digital output code MSB	
VRT	0	11111111	
$:$	\vdots	$:$	
\vdots	127	10000000	
\vdots	128	01111111	
\vdots	\vdots	\vdots	
VRB	255	00000000	

Timing Chart 1

Timing Chart 2

Electrical Characteristics

Analog characteristics
$\left(\mathrm{Fc}=20 \mathrm{MSPS}, \mathrm{V} D=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=2.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Conversion speed	Fc	$\begin{aligned} & \text { VDD }=4.75 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{Ta}=-40 \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{VIN}=0.5 \text { to } 2.5 \mathrm{~V} \\ & \mathrm{fIN}=1 \mathrm{kHz} \text { ramp } \end{aligned}$	0.5		20	MSPS
Analog input band width (-1 dB)	BW	Envelope		18		MHz
Offset voltage*1	Еот	Potential difference to VRT	-10	-35	-60	mV
	Еов	Potential difference to VRB	0	+15	+45	
Integral non-linearity error	EL	End point		+0.5	+1.3	LSB
Differential non-linearity error	Ed			± 0.3	± 0.5	
Differential gain error	DG	NTSC 40 IRE mod ramp $\mathrm{Fc}=14.3 \mathrm{MSPS}$		1.0		\%
Differential phase error	DP			0.5		deg
Aperture jitter	taj			30		ps
Sampling delay	tsd			4		ns

*1 The offset voltage EOB is a potential difference between VRB and a point of position where the voltage drops equivalent to $1 / 2$ LSB of the voltage when the output data changes from " 00000000 " to "00000001". EOT is a potential difference between VRT and a potential of point where the voltage rises equivalent to $1 / 2$ LSB of the voltage when the output data changes from "11111111" to "11111110".

DC characteristics
$\left(\mathrm{Fc}=20 \mathrm{MSPS}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V} \mathrm{RB}=0.5 \mathrm{~V}, \mathrm{VRT}=2.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Timing
$\left(\mathrm{Fc}=20 \mathrm{MSPS}, \mathrm{VDD}=4.75\right.$ to $5.25 \mathrm{~V}, \mathrm{VRB}=0.5 \mathrm{~V}, \mathrm{VRT}=2.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output data delay	TdL	With TTL 1 gate and 10pF load		18	30	ns
Tri-state output enable time	tPzH tPZL	$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{CL}=20 \mathrm{pF}$ $\mathrm{OE}=5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	3	7	13	ns
Tri-state output disable time	tphz tPLZ	$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{CL}=20 \mathrm{pF}$ $\mathrm{OE}=0 \mathrm{~V} \rightarrow 5 \mathrm{~V}$	7	15	26	ns

Electrical Characteristics Measurement Circuit

$\left.\begin{array}{l}\text { Integral non-linearity error } \\ \text { Differential non-linearity error } \\ \text { Offset voltage }\end{array}\right\}$ measurement circuit

Note) CL includes the capacitance of the probe and others.

Maximum operational speed
$\left.\begin{array}{l}\text { Differential gain error } \\ \text { Differential phase error }\end{array}\right\}$ measurement circuit

Digital output current measurement circuit

Timing Chart 3

External clock

Upper comparators block

	$S(1)$	$C(1)$	$S(2)$	$C(2)$	$S(3)$	$C(3)$	$S(4)$	$C(4)$	

Upper data

Lower reference voltage

Lower comparators B block

Digital output

Operation (See Block Diagram and Timing Chart)

1. The CXD1175AM/AP is a 2 -step parallel system A / D converter featuring a 4 -bit upper comparators group and 2 lower comparators groups of 4 -bit each. The reference voltage that is equal to the voltage between VRT - VRB/16 is constantly applied to the upper 4-bit comparator block. Voltage that corresponded to the upper data is fed through the reference supply to the lower data. VRTS and VRBS pins serve for the self generation of VRT (Reference voltage top) and VRB (Reference voltage bottom).
2. This IC uses an offset cancel type comparator and operates synchronously with an external clock. It features the following operating modes which are respectively indicated on the timing chart with $\mathrm{S}, \mathrm{H}, \mathrm{C}$ symbols. That is input sampling (auto zero) mode, input hold mode and comparison mode.
3. The operation of respective parts is as indicated in the chart. For instance input voltage Vi (1) is sampled with the falling edge of the first clock by means of the upper comparator block and the lower comparator A block.

The upper comparators block finalizes comparison data MD (1) with the rising edge of the first clock. Simultaneously the reference supply generates the lower reference voltage RV (1) that corresponded to the upper results. The lower comparator block finalizes comparison data LD (1) with the rising edge of the second clock. MD (1) and LD (1) are combined and output as Out (1) with the rising edge of the 3rd clock. Accordingly there is a 2.5 clock delay from the analog input sampling point to the digital data output.

Operation Notes

1. Vdd, Vss

To reduce noise effects, separate the analog and digital systems close to the device. For both the digital and analog VDd pins, use a ceramic capacitor of about $0.1 \mu \mathrm{~F}$ set as close as possible to the pin to bypass to the respective GND's.
2. Analog input

Compared with the flash type A/D converter, the input capacitance of the analog input is rather small.
However it is necessary to conduct the drive with an amplifier featuring sufficient band and drive capability. When driving with an amplifier of low output impedance, parasite oscillation may occur. That may be prevented by inserting a resistance of about 100Ω in series between the amplifier output and A / D input.
3. Clock input

The clock line wiring should be as short as possible also, to avoid any interference with other signals, separate it from other circuits.
4. Reference input

Voltage between Vrt to VRB is compatible with the dynamic range of the analog input. Bypassing Vrt and $V_{\text {Rb }}$ pins to GND, by means of a capacitor about $0.1 \mu \mathrm{~F}$, stable characteristics are obtained. By shorting Vrt and V_{RT}, V_{RB} and $\mathrm{V}_{\mathrm{RBS}}$, the self-bias function that generates $\mathrm{V}_{\mathrm{RT}}=2.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RB}}=0.6 \mathrm{~V}$, is activated.
5. Timing

Analog input is sampled with the falling edge of CLK and output as digital data with a delay of 2.5 clocks and with the following rising edge. The delay from the clock rising edge to the data output is about 18 ns .
6. $\overline{\mathrm{OE}} \mathrm{pin}$

By connecting $\overline{\mathrm{OE}}$ to GND output mode is obtained. By connecting to VDD high impedance is obtained.
7. About latch up

It is necessary that AVDD and DVDD pins be the common source of power supply.
This is to avoid latch up due to the voltage difference between AVDD and DVDD pins when power is ON.

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

8-bit 20MSPS ADC and DAC Evaluation Board

The CXD1175AP/CXA1106P PCB is evaluation PCB for the 8-bit high speed and low power consumption CMOS A/D converter CXD1175AP and the 8-bit high speed bipolar D/A converter CXD1106P. This PCB features a high speed and low power consumption CMOS A/D converter, analog input buffer, clock buffer, latch and high speed bipolar D / A converter designed to fully enhance the performance of A / D and D / A converters.

Block Diagram

Unnecessary during self-bias usage

Characteristics

- Resolution
- Maximum conversion rate
- Digital input level
- Supply voltage

8bit
20 MHz
TTL level $\pm 5.0 \mathrm{~V}$

Supply voltage

Item	Min.	Typ.	Max.	Unit
+5 V			150	mA
-5 V			20	m

Analog input

AC input voltage

Item	Min.	Typ.	Max.	Unit
Gain (VIn = 2Vp-p input)	0.5		2	
Offset voltage	0		5	V

Clock input

TTL compatible
Pulse width Tcw1 25ns (min.)
Tcwo 25ns (min.)

Analog Output (CXA1106) (RL> 10k Ω)

Item	Min.	Typ.	Max.	Unit
Analog output	0.9	1.0	1.1	V

Output Format (CXD1175A)

The table shows the output format of A/D converter.

Input signal voltage	Step	Digital output code							
		MSB					LSB		
$V_{\text {RT }}$	0	1	1	1	1	1	1	1	1
:	127	1	0	0	0	0	0	0	0
	128		1	1	1	1	1	1	1
:	:								
Vrb	255	0	0	0	0	0	0	0	0

Timing Chart

Item	Symbol	Min.	Typ.	Max.	Unit
Clock high time	TPw1	25			ns
Clock low time	TPwo	25			ns
Clock delay	Tdc			24	ns
Data delay AD	tpD (AD)		18	30	ns
Data delay (latch)	toD			17	ns
Set up time	ts	10			ns
Hold time	th	2			ns
Data delay DA	tPD (DA)		11		ns

Peripheral Circuit Board (Top View)

List of Parts

resistor		transistor	
R1	51Ω	Q1	2SC2785
R2	120Ω	Q2	2SC2785
R3	680Ω	Q3	2SC2785
R4	510Ω	Q4	2SC2785
R5	390Ω	Q5	2SC2785
R6	$2.2 \mathrm{k} \Omega$		
R7	75Ω	IC	
R8	$2.2 \mathrm{k} \Omega$	IC1	74S174
R9	510Ω	IC2	74S174
R10	510Ω	IC3	74S04
R11	75Ω		
VR1	100Ω	Oscillator	
VR2	$10 \mathrm{k} \Omega$	OSC	
VR3	$2 \mathrm{k} \Omega$		
VR4	$2 \mathrm{k} \Omega$	others	
VR5	$5 \mathrm{k} \Omega$	connector SW	BNC071 AT1D2M3
capacitor			
C1	470رF/6.3V (chemical)		
C2	$22 \mu \mathrm{~F} / 16 \mathrm{~V}$ (chemical)		
C3	$0.01 \mu \mathrm{~F}$		
C4	10 $\mathrm{HF} / 16 \mathrm{~V}$ (tamtalate)		
C5	$0.1 \mu \mathrm{~F}$		
C6	$0.1 \mu \mathrm{~F}$		
C7	$0.1 \mu \mathrm{~F}$		
C8	$0.1 \mu \mathrm{~F}$		
C9	$0.1 \mu \mathrm{~F}$		
C10	$0.1 \mu \mathrm{~F}$		
C11	47 $\mathrm{F} / 10 \mathrm{~V}$ (chemical)		
C12	$47 \mu \mathrm{~F} / 10 \mathrm{~V}$ (chemical)		
C13	$47 \mu \mathrm{~F} / 10 \mathrm{~V}$ (chemical)		
C14	$0.1 \mu \mathrm{~F}$		

Method of Adjustment

1. Vgain (VR1)

Gain adjustment of the analog input.
2. Voffset (VR2)

Offset adjustment of the analog input.
3. Vref (VR3, VR4)

Adjustment of the A/D converter reference voltage.
VRB is adjusted at VR3, and VRT at VR4. Reference voltage is given with self-bias for PCB shipment.
4. Analog output gain (VR5)

Full-scale voltage of the D/A converter output is adjusted.

Points on the PCB Pattern Layout

1. Layout so that digital current does not flow to analog GND (part 1). (See Component Side on page 19 for part 1.)
2. Capacitor $C 6$ (between $A V s s$ and $A V D D$) and capacitor $C 14$ (between $D V s s$ and $D V D D$) are important factors to enhance the CXD1175A performance. Those capacitors should feature good high frequency characteristics over $0.1 \mu \mathrm{~F}$ (ceramic capacitor). Layout as close to the IC as possible.
3. Analog GND (AVss) and Digital GND (DVss) have a common voltage and a supply source. The DVss of A/D converter (part 2) location as close to the voltage source is possible will give even better results. That is, a layout where the A/D converter is close to the voltage source is recommended. (See Component Side on page 19 for part 2.)
4. AVDd (Pins 14, 15 and 18) and DVDD (Pins 11 and 13) are provided in the CXD1175A, and a common voltage source should be used for them as for part 3. (See the paragraph for Latch Up Prevention.) (See Soldering Side on page 19 for part 3.)
5. The A / D converter samples analog signals at the falling edge of clock. Accordingly, clocks fed to the A / D converter should not be affected by jitter.
6. In this PCB, to evaluate A / D and D / A converters independently, an independent layout has been adopted for the analog GND of A / D and D/A converters, from the voltage generation source. For the user's actual PCB even a common source poses no problems. For the CXA1106, as analog signals are output with the supply voltage as reference, take care not to let noise interfere with the analog Vdd of D/A converter.

Notes on Operation

1. Reference voltage

The self-bias function where $\mathrm{V}_{\mathrm{Rt}}=2.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RB}}=0.6 \mathrm{~V}$ is available by shorting V_{rt} and $\mathrm{V}_{\mathrm{rts}}$, V_{Rb} and Vrbs in the CXD1175A. At the PCB, either self-bias or external reference voltage can be selected according to the way the jumper wire is connected. For shipment, the reference voltage is provided by the self-bias. Also, when reference voltage is to be provided from the exterior, adjust the dynamic range (Vrt $V_{R B}$ to $1.8 \mathrm{Vp}-\mathrm{p}$ or over.
2. Clock input

There are two modes for the PCB clock input.

1) Through an external signal generator (external clock)
2) Using a crystal oscillator (internal clock)

These two modes can be selected with a switch on the PCB.
They are given from the external clock for shipment.
3. Peripheral through hole

There is a number of through holes at the analog input, output and LOGIC areas. Those are used when additional circuits are to be mounted on the PCB circuit.

4 The two latch ICs (74S174) on the circuit diagram are not absolutely necessary for the A / D and D/A converter evaluation. That is, when the A/D converter output data is directly input to D/A converter input, normal operation is maintained. However, as A / D converter output data is hardly ever subject to D/A conversion without the digital signal processing, the PCB has been fitted with the 74S174 to show a layout example for digital signal processing IC.
5. Analog input buffer \& driver block is designed to handle conventional video band signals. Accordingly, for tests involving frequencies higher than that, methods shown in the figure below are recommended.

High frequency input measurement circuit

Latch Up Prevention

The CXD1175A is a CMOS IC which requires latch up precautions. Latch up is mainly generated by the lag in the voltage rising time of $A V_{D D}$ (Pins 14, 15 and 18) and DVDD (Pins 11 and 13), when power supply is ON.

1. Correct usage

a. When analog and digital supplies are from different sources

b. When analog and digital supplies are from a common source
(i)

(ii)

2. Example when latch up easily occurs
a. When analog and digital supplies are from different sources

b. When analog and digital supplies are from common source (i)

(ii)

Silk Side

Component side

Soldering side

Package Outline

CXD1175AM
Unit: mm

24PIN SOP (PLASTIC)

CXD1175AP

24PIN DIP(PLASTIC)

Two kinds of package surface:
1.All mat surface type.
$\frac{\text { 1.All mat surface type. }}{\text { 2.All mirror surface type. }}$

PACKAGE STRUCTURE

SONY CODE	DIP-24P-01
EIAJ CODE	DIP024-P-0400
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	2.0 g

