6-bit 40MSPS High Speed D/A Converter

Description

The CXD1170M is a 6 -bit 40 MHz high speed D/A converter. The adoption of a current output system reduces power consumption to $80 \mathrm{~mW}(200 \Omega$ load at 2Vp-p output).
This IC is suitable for digital TV and graphic display applications.

Features

- Resolution 6-bit
- Max. conversion speed 40MSPS
- Non linearity error within $\pm 0.1 \mathrm{LSB}$
- Low glitch noise
- TTL CMOS compatible input
- +5V single power supply
- Low power consumption 80 mW
(200 load at 2Vp-p output)

Structure

Silicon gate CMOS IC

Function

6-bit 40MHz D/A converter

Block Diagram and Pin Configuration

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage
- Input voltage

VDD
Vin

- Output current
- Storage temperature
lout
Tstg

7	V
Vod to Vss	V
15	mA
-55 to +150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

- Supply voltage

AVdd, AVss
DVdd, DVss
4.75 to 5.25

V
4.75 to 5.25

V
Vref
2.0

V

- Reference input voltage
- Clock pulse width
- Operating temperature

Tpw1
12.5 (Min)
ns
Tpwo
Topr
12.5 (Min)
ns
-20 to $+75 \quad{ }^{\circ} \mathrm{C}$

Pin Description and I/O Pins Equivalent Circuit

No.	Symbol	Equivalent circuit	Description
3 to 8	D0 to D5	(3) (8)	Digital input
9	BLK		Blanking pin No signal at "H" (Output 0V) Output condition at "L"
11	VB	(11)	Connect a capacitor of about $0.1 \mu \mathrm{~F}$
12	CLK	(12)	Clock pin Moreover all input pins are TTL-CMOS compatible
10,13	DVss		Digital GND
14	AVss		Analog GND

No.	Symbol	Equivalent circuit	Description
15	IREF		Connect a resistance 16 times "16R" that of output resistance value "R"
16	VREF	4 avs .	Set full scale output value
17	VG	${ }^{1}{ }_{\text {avss }}$	Connect a capacitor of about $0.1 \mu \mathrm{~F}$
18, 19, 22	AVdD		Analog VDD
20	10	(20)	Current output pin Voltage output can be obtained by connecting a resistance
21	$\overline{\mathrm{O}}$		Inverted current output pin Normally dropped to analog GND
23, 24	DVdD		Digital VDD

Eleoctrical Characteristics
(fclk $=40 \mathrm{MHz}, \mathrm{Vdd}=5 \mathrm{~V}$, Rout $=200 \Omega$, V Ref $=2.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Resolution	n			6		bit
Maximum conversion speed	fmax				40	MSPS
Minimum conversion speed	fmin		0.5			MHz
Linearity error	EL		-0.3		0.5	LSB
Differential linear error	ED		-0.1		0.1	LSB
Full scale output voltage	VFS		1.85	1.95	2.05	V
Full scale output current	IFs			10	15	mA
Offset output voltage	Vos				1	mV
Power supply current	IDD	14.3 MHz , at COLOR BAR DATA input	13	14.5	16	mA
Digital input current	High level	IIH				5
	Low level	IL		-5		
Setup time	ts		5			nA
Hold time	tH		10			ns
Propagation delay time	tpD			10		ns
Glitch energy	GE	Rout $=75 \Omega$		30		$\mathrm{pV}-\mathrm{s}$

Maximum conversion speed test circuit

DC characteristics test circuit

Propagation delay time test circuit

Setup hold time and glitch energy test circuit

Operation

Timing Chart

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

I/O Chart (when full scale output voltage at 2.00 V)

Input code			Output voltage			
MSB		LSB				
1	1	1	1	1	1	2.0 V
1	0	0	0	0	0	
		$:$				
0	0	0	0	0	0	0 V

Notes on Operation

- How to select the output resistance

The CXD1170M is a D/A converter of the current output type. To obtain the output voltage connect the resistance to IO pin. For specifications we have:

Output full scale voltage $\quad \mathrm{V}_{\mathrm{FS}}=$ less than 2.0 [V]
Output full scale current IFs = less than 15 [mA]
Calculate the output resistance value from the relation of VFs $=$ IFs \times R. Also, 16 times resistance of the output resistance is connected to reference current pin IREF. In some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute. Here please note that $V_{\text {fs }}$ becomes $V_{F S}=V_{\text {Ref }} \times 16 R / R$ '. R is the resistance connected to IO while R' is connected to Iref. Increasing the resistance value can curb power consumption. On the other hand glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application.

- Phase relation between data and clock

To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation between data and clock applied from the exterior. Be sure to satisfy the provisions of the setup time (ts) and hold time (t_{H}) as stipulated in the Electrical Characteristics.

- Vdd, Vss

To reduce noise effects separate analog and digital systems in the device periphery. For Vdd pins, both digital and analog, bypass respective GNDs by using a ceramic capacitor of about $0.1 \mu \mathrm{~F}$, as close as possible to the pin.

- Latch up

AVdd and DVdd have to be common at the PCB power supply source. This is to prevent latch up due to voltage difference between $A V D D$ and DVDD pins when power supply is turned ON.

Output resistance vs. Glitch energy

Output full scale voltage vs. Ambient temperature

Package Outline Unit: mm

24PIN SOP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SOP-24P-L01
EIAJ CODE	$*$ SOP024-P-0300-A
JEDEC CODE	-

MOLDING COMPOUND	EPOXY/PHENOL RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY/ 42ALLOY
PACKAGE WEIGHT	0.3 g

