US Audio Multiplexing Decoder

Description

The CXA2104S is an IC designed as a decoder for the Zenith TV Multi-channel System and also corresponds with $I^{2} \mathrm{C}$ BUS. Functions include stereo demodulation, SAP (Separate Audio Program) demodulation, dbx noise reduction. Various kinds of filters are built in while adjustment and mode control are all executed through $I^{2} \mathrm{C}$ BUS.

Features

- Adjustment free of VCO and filter.
- Audio multiplexing decoder and dbx noise reduction decoder are all included in a single chip. Almost any sort of signal processing is possible through this IC.
- All adjustments are possible through $I^{2} \mathrm{C}$ BUS to allow for automatic adjustment.
- Various built-in filter circuits greatly reduce external parts.
- There is an additional SAP output.

Standard I/O Level

- Input level

COMPIN (Pin 11)	100 mVrms
	245 mVrms (Selected by INSW)

- Output level

TVOUT-L/R (Pins 2 and 1) 490mVrms

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage Vcc 11 V
- Operating temperature Topr -20 to $+75 \quad{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg $\quad-65$ to $+150 \quad{ }^{\circ} \mathrm{C}$
- Allowable power dissipation

$$
\begin{array}{lll}
\text { Pd } & 1.35 & W
\end{array}
$$

Range of Operating Supply Voltage

$$
9 \pm 0.5 \quad V
$$

Applications

TV, VCR and other decoding systems for US audio multiplexing TV broadcasting

Structure

Bipolar silicon monolithic IC

Pin Configuration (Top View)

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
7	MAINOUT	4.0 V		$(\mathrm{L}+\mathrm{R})$ signal output pin.
8	PCINT1	4.0 V		
9	PCINT2	4.0 V		Stereo block PLL loop filter integrating pin.
10	PLINT	5.1V		Pilot cancel circuit loop filter integrating pin. (Connect a $1 \mu \mathrm{~F}$ capacitor between this pin and GND.)

Sin | Symbol |
| :--- |
| No. |
| voltage | COMPIN

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
20	SAPOUT	4.0 V		SAP FM detector output pin.
22	VE	4.0 V		Variable de-emphasis integrating pin. (Connect a 2700pF capacitor and a $3.3 \mathrm{k} \Omega$ resistor in series between this pin and GND.)
23	VEWGT	4.0 V		Weight the variable de-emphasis control effective value detection circuit. (Connect a $0.047 \mu \mathrm{~F}$ capacitor and a $3 k \Omega$ resistor in series between this pin and GND.)
24	VETC	1.7V		Determine the restoration time constant of the variable de-rmphasis control effective value detection circuit. (the specified restoration time constant can be obtained by connecting a $3.3 \mu \mathrm{~F}$ capacitor between this pin and GND.)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
25	VEOUT	4.0V	(25)	Variable de-emphasis output pin. (Connect a $4.7 \mu \mathrm{~F}$ non-polar capacitor between Pins 25 and 26.)
26	VCAIN	4.0V		VCA input pin. Input the variable de-emphasis output signal from Pin 25 via a coupling capacitor.
27	VCATC	1.7V		Determine the restoration time constant of the VCA control effective value detection circuit. (the specified restoration time constant can be obtained by connecting a $10 \mu \mathrm{~F}$ capacitor between this pin and GND.)
28	VCAWGT	4.0V		Weight the VCA control effective value detection circuit. (Connect a $1 \mu \mathrm{~F}$ capacitor and a $3.9 \mathrm{k} \Omega$ resistor in series between this pin and GND.)
29	NC	-	(29)	-

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
30	SOUT	4.0 V		Additional SAP output pin.

Electrical Characteristics
COMPIN input level
(100\% modulation level)

No.	Item	Signal	Mode	Input pin	Input signal	Measurement conditions	Filter	Output pin	Min.	Typ.	Max.	Unit
1	Current consumption	Icc		-	No signal				22	32	42	mA
2	Main output level	Vmain	MONO	11	Mono 1kHz 100\% mod Pre-em. ON			1/2	440	490	540	mVrms
3	Main de-emphasis frequency characteristic	FCdeem	MONO	11	Mono $5 \mathrm{kHz} 30 \%$ mod. Pre-em. ON	$\begin{aligned} & 20 \log \\ & \left(' 5 k k^{\prime} / 1 k^{\prime}\right) \end{aligned}$		1/2	-1.2	0	1.0	dB
4	Main LPF frequency characteristic	FCmain	MONO	11	Mono 12kHz 30\% mod Pre-em. ON	$\begin{array}{\|l} \hline 20 \log \\ \left(' 12 k^{\prime} / 1 k^{\prime}\right) \end{array}$		1/2	-3.0	-1.0	1.0	dB
5	Main distortion	THDm	MONO	11	Mono 1kHz 100\% mod Pre-em. ON		15kLPF	1/2	-	0.1	0.5	\%
6	Main overload distortion	THDmmax	MONO	11	Mono 1kHz 200\% mod Pre-em. OFF		15kLPF	1/2	-	0.15	0.5	\%
7	Main S/N	SNmain	MONO	11	Mono 1kHz, Pre-em. ON	$\begin{array}{\|l\|} \hline 20 \log \\ (' 100 \% ' / 0 \% ') \end{array}$	15kLPF	1/2	61	69	-	dB
8	Sub output level	Vsub	ST	11	$\begin{aligned} & \hline \text { SUB (L-R) 1kHz, } \\ & \text { 100\% mod., NR OFF } \end{aligned}$			17	150	190	230	mVrms
9	Sub LPF frequency characteristic	FCsub	ST	11	SUB (L-R) 12kHz, 30\% mod., NR OFF	$\begin{aligned} & \hline 20 \log \\ & \left(' 12 k^{\prime} / 1 k^{\prime}\right) \end{aligned}$		17	-3.0	-0.5	1.0	dB
10	Sub distortion	THDsub	ST	11	SUB (L-R) 1kHz, 100\% mod., NR OFF		15kLPF	17	-	0.1	1.0	\%
11	Sub overload distortion	THDsmax	ST	11	SUB (L-R) 1kHz, 200\% mod., NR OFF		15kLPF	17	-	0.2	2.0	\%
12	Sub S/N	SNsub	ST	11	$\begin{aligned} & \text { SUB (L-R) 1kHz, } \\ & \text { NR OFF } \end{aligned}$	$\begin{aligned} & 20 \log \\ & \left(' 100 \%{ }^{\prime} /{ }^{\prime} 0 \% '\right) \end{aligned}$	15kLPF	17	56	64	-	dB
13	$S T \rightarrow \text { SAP }$ Crosstalk	CTst	SAP	11	SUB (L-R) 1kHz, 100\% mod., NR ON, SAP Carrier (5fH)	$\begin{aligned} & \hline 20 \log \\ & \text { ('NRSW = 0'/ } \\ & \text { 'NRSW = 1') } \end{aligned}$	1kBPF	2	60	70	-	dB

－	ㄲ	％	％	\sum_{ξ}^{∞}	％	ஃ๐	％	％	ㄲ	％	％	％	％	％
$\stackrel{\dot{㐅}}{\stackrel{\rightharpoonup}{\boldsymbol{\omega}}}$	¢	$\stackrel{0}{p}$	웅	유N	$\stackrel{\sim}{\mathrm{N}}$	\bigcirc	1	1		\bigcirc	1	1	1	1
$\stackrel{\beth}{\gtrless}$	～	\bigcirc	\bigcirc	읃	\bigcirc	$\stackrel{\sim}{\sim}$	\＆	\bigcirc	O	$\stackrel{\bigcirc}{\circ}$	¢	¢	セ¢	¢
$\stackrel{5}{\Sigma}$	1	○	$\stackrel{\text { 안 }}{ }$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\uparrow}$	1	9	8	$\stackrel{\mathrm{O}}{\mathrm{i}}$	$\stackrel{\text { 안 }}{ }$	N	N	～	N
	$\stackrel{ }{ } \stackrel{ }{ }$			소	소	산	산	\sim			$\stackrel{N}{\sim}$	$\stackrel{N}{\sim}$	$\stackrel{N}{\sim}$	$\stackrel{N}{\sim}$
$\frac{\bar{y}}{\stackrel{y}{\bar{i}}}$	$\begin{aligned} & \text { u } \\ & 0 \\ & \text { I } \end{aligned}$						$\begin{aligned} & \text { L } \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$			¢		U $\stackrel{\rightharpoonup}{0}$ \sim	¢
					$\begin{aligned} & \frac{\bar{x}}{5} \\ & \text { 읃 } \\ & \text { 을 } \end{aligned}$									
¢	F			F	F	\mp	F	F			F	\digamma	F	F
$\begin{aligned} & \frac{0}{\circ} \\ & \sum \\ & \hline \end{aligned}$	ゅ			$\frac{\stackrel{2}{6}}{\omega}$	$\frac{0}{6}$	$\frac{\square}{6}$	$\frac{0}{6}$	ゅ			あ	๒	ゅ	ぁ
$\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \text { ज } \end{aligned}$	$\begin{aligned} & \text { ou } \\ & \text { जु } \\ & \text { n } \end{aligned}$	$\frac{\stackrel{\pi}{\Phi}}{\stackrel{1}{I}}$	$\stackrel{\dot{n}}{\underset{I}{i}}$	$\begin{aligned} & \text { 毋্চ } \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\oplus}{\infty} \\ & \stackrel{1}{I} \end{aligned}$	$\begin{aligned} & \text { ®o } \\ & \sum_{\infty}^{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\oplus} \\ & \stackrel{\ominus}{\circ} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\oplus}{\infty} \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{-}{\varrho} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\omega}{\circ} \end{aligned}$	$\begin{aligned} & \bar{\square} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\sqsubseteq} \\ & \omega \end{aligned}$	～	No O 0 $\stackrel{\sim}{5}$ ¢
$\stackrel{\stackrel{\ominus}{\Phi}}{\stackrel{1}{ \pm}}$		$\begin{aligned} & \overline{0} \\ & \frac{0}{Z} \\ & 0 \\ & 0 \\ & \frac{Q}{\omega} \\ & \bar{\omega} \\ & \dot{\omega} \end{aligned}$												
\％	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{*}$	$\stackrel{\infty}{\square}$	®	소	$\bar{\sim}$	N	N	～	$\stackrel{\llcorner }{N}$	$\stackrel{\circ}{\sim}$	N

Adjustment Method (This is the case when standard input level is $\mathbf{2 4 5 m V r m s}$.)

1. ATT adjustment
1) TEST BIT is set to "TEST1 = 0 " and "TEST-DA = 0 ".
2) Input a $100 \mathrm{~Hz}, 245 \mathrm{mVrms}$ sine wave signal to COMPIN and monitor the TVOUT-L output level. Then, adjust the "ATT" data for ATT adjustment so that the TVOUT-L output goes to the standard value (490 mV rms).
3) Adjustment range: $\pm 30 \%$

Adjustment bits: 4 bits
2. Separation adjustment

1) TEST BIT is set to "TEST1 = 0 " and "TEST-DA = 0 ".
2) Set the unit to stereo mode and input the left channel only signal (modulation factor 30%, frequency 300 Hz NR-ON) to COMPIN. At this time, adjust the "WIDEBAND" adjustment data to reduce TVOUT-R output to the minimum.
3) Next, set the frequency only of the input signal to 3 kHz and adjust the "SPECTRAL" adjustment data to reduce TVOUT-R output to the minimum.
4) The adjustments in 2 and 3 above are performed to optimize the separation.
5) "WIDEBAND"
"SPECTRAL"
Adjustment range: $\pm 30 \%$
Adjustment range: $\pm 15 \%$
Adjustment bits: 6 bits Adjustment bits: 6 bits

Description of Operation

The US audio multiplexing system possesses the base band spectrum shown in Fig. 1.

Fig. 1. Base band spectrum

Fig. 2. Overall block diagram (See Fig. 3 for the dbx-TV block)

Fig 3. dbx-TV block
(1) $L+R$ (MAIN)

After the audio multiplexing signal input from COMPIN (Pin 11) passes through MVCA, the SAP signal and telemetry signal are suppressed by STEREO LPF. Next, the pilot signals are canceled. Finally, the L - R signal and SAP signal are removed by MAIN LPF, and frequency characteristics are flattened (de-emphasized) and input to the matrix.
(2) $L-R(S U B)$

The $L-R$ signal follows the same course as $L+R$ before the pilot signal is canceled. $L-R$ has no carrier signal, as it is a suppressed-carrier double-sideband amplitude modulated signal (DSB-AM modulated). For this reason, the pilot signal is used to regenerate the carrier signal (quasi-sine wave) to be used for the demodulation of the $L-R$ signal. In the last stage, the residual high frequency components are removed by SUB LPF and the $L-R$ signal is input to the dbx-TV block via the NRSW circuit after passing through SUBVCA.
(3) SAP

SAP is an FM signal using 5 fH as a carrier as shown in the Fig. 1. First, the SAP signal only is extracted using SAP BPF. Then, this is subjected to FM detection. Finally, residual high frequency components are removed and frequency characteristics flattened using SAP LPF, and the SAP signal is input to the dbx-TV block via the NRSW circuit. When there is no SAP signal, the Pin 20 output is soft muted.
(4) Mode discrimination

Stereo discrimination is performed by detecting the pilot signal amplitude. SAP discrimination is performed by detecting the 5 fH carrier amplitude. NOISE discrimination is performed by detecting the noise near 25 kHz after FM detection of SAP signal.
(5) dbx-TV block

Either the $L-R$ signal or SAP signal input respectively from ST IN (Pin 18) or SAP IN (Pin 21) is selected by the mode control and input to the dbx-TV block.
The input signal then passes through the fixed de-emphasis circuit and is applied to the variable deemphasis circuit. The signal output from the variable de-emphasis circuit passes through an external capacitor and is applied to VCA (voltage control amplifier). Finally, the VCA output is converted from a current to a voltage using an operational amplifier and then input to the matrix.
The variable de-emphasis circuit transmittance and VCA gain are respectively controlled by Each of effective value detection circuits. Each of the effective value detection circuits passes the input signal through a predetermined filter for weighting before the effective value of the weighted signal is detected to provide the control signal.
(6) Matrix

The signals ($L+R, L-R, S A P$) input to "MATRIX" become the outputs for the ST-L, ST-R, MONO and SAP signals according to the mode control and whether there is ST / SAP discrimination.
(7) Others
"MVCA" is a VCA which adjusts the input signal level to the standard level of this IC.
"Bias" supplies the reference voltage and reference current to the other blocks. The current flowing to the resistor connecting IREF (Pin 13) with GND become the reference current.

Register Specifications

Slave address

SLAVE RECEIVER	SLAVE TRANSMITTER
$84 \mathrm{H}(10000100)$	$85 \mathrm{H}(10000101)$

Register table

SUB ADDRESS	DATA							
MSB LSB	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
****0000	*		TEST-DA	TEST1	ATT (4)			
****0001	*		SPECTRAL (6)					
****0010	*		WIDEBAND (6)					
****0011	*		DATA1	DATA2	NRSW	FOMO	SAPC	M1
****0100	*		INSW	DATA5	ATTSW	FST	DATA3	DATA4

Status Registers

STA1	STA2	STA3	STA4	STA5	STA6	STA7	STA8
BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
POWER ON RESET	STEREO	SAP	NOISE	-	-	-	-

Description of Registers

Control registers

Register	Number of bits	Classification*1	Standard setting	Contents
ATT	4	A	9	Input level adjustment
SPECTRAL	6	A	1 F	Adjustment of stereo separation (3kHz)
WIDEBAND	6	A	1 F	Adjustment of stereo separation (300 Hz)
TEST-DA	1	T	0	Turn to DAC test mode by means of TEST-DA $=1$.
TEST1	1	T	0	Turn to test mode by means of TEST $=1$.
FST	1	T	0	Turn to forced stereo by means of FST $=1$.
NRSW	1	U	-	Selection of the output signal (Stereo mode, SAP mode)
FOMO	1	U	-	Turn to forced MONO by means of $\mathrm{FOMO}=1$. (Left channel only is MONO during SAP output.)
M1	1	U	1	Selection of TVOUT mute ON/OFF (0: mute ON, 1: mute OFF)
ATTSW	1	S	-	Turn the input stage MVCA off when ATTSW $=1$.
INSW	1	S	-	Selection of standard input level
SAPC	1	S	-	Selection of SAP mode or L + R mode according to the presence of SAP broadcasting
DATA1	1	T	0	
DATA2	1	T	0	
DATA3	1	T	0	Test mode (Normal standard setting value)
DATA4	1	T	0	
DATA5	1	T	0	

${ }^{* 1}$ Classification U: User control
A: Adjustment
S: Proper to set
T: Test

Status registers

| Register | Number of bits | Contents | |
| :--- | :---: | :--- | :--- | :--- |
| PONRES | 1 | POWER ON RESET detection; | 1: RESET |
| STEREO | 1 | Stereo discrimination of the COMPIN input signal; | 1: Stereo |
| SAP | 1 | SAP discrimination of the COMPIN input signal; | 1: SAP |
| NOISE | 1 | Noise level discrimination of the SAP signal; | 1: Noise |

Description of Control Registers

ATT (4): Adjust the signal level input to COMPIN (Pin 11) to the standard input level.
Variable range of the input signal: standard input level -5.0 dB to +3.0 dB
0 = Level min.
$\mathrm{F}=$ Level max.

SPECTRAL (6): Perform high frequency ($\mathrm{fs}=3 \mathrm{kHz}$) separation adjustment.
0 = Level max.
$3 F=$ Level min.

WIDEBAND (6): Perform low frequency ($\mathrm{fs}=300 \mathrm{~Hz}$) separation adjustment.
$0=$ Level min.
3F = Level max.

TEST-DA (1): Set DAC output test mode.
0 = Normal mode
1 = DAC output test mode
In addition, the following output are present at Pin 2.
TVOUT-L (Pin 2): DA control DC level

TEST1 (1): Monitor SAPBPF and NRBPF output
0 = Normal mode
1 = SAPBPF, NRBPF output
In addition, the following outputs are present at Pins 1 and 2.
TVOUT-L (Pin 2): SAP BPF OUT
TVOUT-R (Pin 1): NR BPF OUT

FST (1): Select forced STEREO mode
0 = Normal mode
1 = Forced stereo mode

NRSW (1): \quad Select stereo mode or SAP mode
0 = Stereo mode
1 = SAP mode

FOMO (1): Select forced MONO mode
0 = Normal mode
1 = Forced MONO mode

M1 (1): Mute the TVOUT-L and TVOUT-R output.
$0=$ Mute ON
1 = Mute OFF

ATTSW (1) Select BYPASS SW of MVCA
0 = Normal mode
$1=$ MVCA is passed

INSW (1): Select standard input level of COMPIN (Pin 11).
$0=245 \mathrm{mVrms}$
$1=100 \mathrm{mVrms}$

SAPC (1): Select the SAP signal output mode
When there is no SAP signal, the conditions for selecting SAP output are selected by SAPC.
$0=L+R$ output is selected
$1=$ SAP output is selected

Description of Mode Control

Mode control	SAPC $=0$	SAPC = 1
NRSW	"Select dbx input and TV decoder output" Conditions: $\mathrm{FOMO}=0$ NRSW $=0$ (MONO or ST output) - During ST input: left channel: L, right channel: R - During other input: left channel: $L+R$, right channel: L + R NRSW $=1$ (SAP output) - When there is "SAP" during SAP discrimination - left channel: SAP, right channel: SAP - When there is "No SAP", output is the same as when $\mathrm{NRSW}=0$.	"Select dbx input and TV decoder output" Conditions: $\mathrm{FOMO}=0$ NRSW $=0$ (MONO or ST output) As on the left NRSW = 1 (SAP output) - Regardless of the presence of SAP discrimination, dbx input: "SAP" left channel: SAP, right channel: SAP However, when there is no SAP, SAPOUT output is soft muted (-7 dB)
FOMO	"Forced MONO" FOMO = 1 - During SAP output: left channel: $L+R$, right channel: SAP - During ST or MONO output: left channel: L + R, right channel: L + R	
SAPC	Change the selection conditions for "MONO or ST output" and "SAP output". SAPC $=0$: Switch to SAP output when there is SAP discrimination. Do not switch to SAP output when there is no SAP discrimination. SAPC = 1: Switch to SAP output regardless of whether there is SAP discrimination.	
M1	M1 = 0 : TVOUT output is muted. "MUTE"	

Decoder Output and Mode Control Table 1 (SAPC = 1)

Input signal mode	Mode detection			Mode control			dbx input	Output	
	ST	SAP	NOISE	NRSW	FOMO	SAPC		Lch	Rch
MONO* ${ }^{\text {² }}$	0	0	0	0	*	1	MUTE	L + R	L + R
	0	0	0	1	0	1	SAP	SAP	SAP
	0	0	0	1	1	1	SAP	L + R	SAP
	0	*	1	0	*	1	MUTE	L + R	L + R
	0	*	1	1	0	1	(SAP)	(SAP)	(SAP)
	0	*	1	1	1	1	(SAP)	L + R	(SAP)
STEREO*1	1	0	*	0	0	1	L-R	L	R
	1	0	*	0	1	1	MUTE	L + R	$L+R$
	1	1	1	0	0	1	L-R	L	R
	1	1	1	0	1	1	MUTE	L + R	L + R
	1	0	0	1	0	1	SAP	SAP	SAP
	1	0	0	1	1	1	SAP	L + R	SAP
	1	*	1	1	0	1	(SAP)	(SAP)	(SAP)
	1	*	1	1	1	1	(SAP)	L + R	(SAP)
MONO \& SAP	0	1	*	0	0	1	MUTE	L + R	L + R
	0	1	*	0	1	1	MUTE	L + R	L + R
	0	1	0	1	0	1	SAP	SAP	SAP
	0	1	0	1	1	1	SAP	L + R	SAP
	0	1	1	1	0	1	(SAP)	(SAP)	(SAP)
	0	1	1	1	1	1	(SAP)	L + R	(SAP)
STEREO \& SAP	1	1	*	0	0	1	L-R	L	R
	1	1	*	0	1	1	MUTE	L + R	L + R
	1	1	0	1	0	1	SAP	SAP	SAP
	1	1	0	1	1	1	SAP	L + R	SAP
	1	1	1	1	0	1	(SAP)	(SAP)	(SAP)
	1	1	1	1	1	1	(SAP)	L + R	(SAP)

Note

(SAP) : The SAPOUT output signal is soft muted (approximately -7 dB).
The signal is soft muted when NOISE $=1$.

* : Don't care.
*1 SAP or NOISE discrimination may be made during MONO or STEREO input when the noise is inputted in the weak electric field.
Then microcomputer reads "NOISE" status from IC and decides whether SAP is outputted.
"NOISE" status rises earlier than "SAP" status when the amount of noise is increased to COMPIN.

Decoder Output and Mode Control Table $2(S A P C=0)$

Input signal mode	Mode detection			Mode control			dbx input	Output	
	ST	SAP	NOISE	NRSW	FOMO	SAPC		Lch	Rch
MONO * ${ }^{\text {¹ }}$	0	0	*	*	*	0	MUTE	L + R	L + R
	0	1	1	0	0	0	MUTE	$L+R$	L + R
	0	1	1	0	1	0	MUTE	$L+\mathrm{R}$	L + R
	0	1	1	1	0	0	(SAP)	(SAP)	(SAP)
	0	1	1	1	1	0	(SAP)	L + R	(SAP)
STEREO *1	1	0	*	0	0	0	L-R	L	R
	1	0	*	0	1	0	MUTE	L + R	L + R
	1	0	*	1	0	0	L-R	L	R
	1	0	*	1	1	0	MUTE	L+R	L + R
	1	1	1	0	0	0	L-R	L	R
	1	1	1	0	1	0	MUTE	L + R	L + R
	1	1	1	1	0	0	(SAP)	(SAP)	(SAP)
	1	1	1	1	1	0	(SAP)	L + R	(SAP)
MONO \& SAP	0	1	0	0	0	0	MUTE	$L+R$	L + R
	0	1	0	0	1	0	MUTE	L+R	L + R
	0	1	0	1	0	0	SAP	SAP	SAP
	0	1	0	1	1	0	SAP	$L+R$	SAP
	0	1	1	0	0	0	MUTE	$L+R$	L + R
	0	1	1	0	1	0	MUTE	$L+R$	$L+R$
	0	1	1	1	0	0	(SAP)	(SAP)	(SAP)
	0	1	1	1	1	0	(SAP)	L + R	(SAP)
STEREO \& SAP	1	1	0	0	0	0	L-R	L	R
	1	1	0	0	1	0	MUTE	L + R	$L+R$
	1	1	0	1	0	0	SAP	SAP	SAP
	1	1	0	1	1	0	SAP	L + R	SAP
	1	1	1	0	0	0	L-R	L	R
	1	1	1	0	1	0	MUTE	L + R	L + R
	1	1	1	1	0	0	(SAP)	(SAP)	(SAP)
	1	1	1	1	1	0	(SAP)	L + R	(SAP)

Note

(SAP) : The SAPOUT output signal is soft muted (approximately -7 dB).
The signal is soft muted when NOISE $=1$.

* : Don't care.
*1 SAP or NOISE discrimination may be made during MONO or STEREO input when the noise is inputted in the weak electric field.
Then microcomputer reads "NOISE" status from IC and decides whether SAP is outputted.
"NOISE" status rises earlier than "SAP" status when the amount of noise is increased to COMPIN.
I^{2} C BUS block items (SDA, SCL)

No.	Item	Symbol	Min.	Typ.	Max.	Unit
1	High level input voltage	VIH	3.0	-	5.0	V
2	Low level input voltage	VIL	0	-	1.5	
3	High level input current	IH	-	-	10	$\mu \mathrm{A}$
4	Low level input current	IIL	-	-	10	
5	Low level output voltage SDA (Pin 3) during 3mA inflow	Vol	0	-	0.4	V
6	Maximum inflow current	lol	3	-	-	mA
7	Input capacitance	Cl	-	-	10	pF
8	Maximum clock frequency	fscl	0	-	100	kHz
9	Minimum waiting time for data change	tBuF	4.7	-	-	$\mu \mathrm{s}$
10	Minimum waiting time for start of data transfer	thd: STA	4.0	-	-	
11	Low level clock pulse width	tLow	4.7	-	-	
12	High level clock pulse width	thigh	4.0	-	-	
13	Minimum waiting time for start preparation	tsu: STA	4.7	-	-	
14	Minimum data hold time	thd: DAT	0	-	-	
15	Minimum data preparation time	tsu: DAT	250	-	-	ns
16	Rise time	tR	-	-	1	$\mu \mathrm{s}$
17	Fall time	tF	-	-	300	ns
18	Minimum waiting time for stop preparation	tsu: STO	4.7	-	-	$\mu \mathrm{s}$

${ }^{2} \mathrm{C}$ BUS load conditions: Pull-up resistor $4 \mathrm{k} \Omega$ (Connect to +5 V)
Load capacity 200pF (Connect to GND)

${ }^{12} \mathrm{C}$ BUS Control Signal

${ }^{2}{ }^{2} \mathrm{C}$ BUS Signal

There are two $I^{2} \mathrm{C}$ signals, SDA (Serial DATA) and SCL (Serial CLOCK) signals. SDA is a bidirectional signal.

- Accordingly there are 3 values outputs, H, L and HIZ.

- ${ }^{2} \mathrm{C}$ transfer begins with Start Condition and ends with Stop Condition.

- ${ }^{2}{ }^{2}$ data Write (Write from I ${ }^{2} \mathrm{C}$ controller to the IC)

- ${ }^{2} \mathrm{C}$ data Read (Read from the IC to $\mathrm{I}^{2} \mathrm{C}$ controller)

- Read timing

* Data Read is performed during SCL rise.

Input level vs. Distortion characteristics 1 (MONO)

Input level vs. Distortion characteristics 2 (Stereo)

Input level vs. Distortion characteristics 3 (SAP)

SAP frequency characteristics and group delay

Main LPF and Sub LPF frequency characteristics

Additional SAP frequency characteristics

Two kinds of package surface:
1.All mat surface type.
2.All mirror surface type.

SONY CODE	SDIP-30P-01
EIAJ CODE	SDIP030-P-0400
JEDEC CODE	-

PACKAGE STRUCTURE

MOLDING COMPOUND	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM
LEAD MATING	
PACKAGE MASS	COPPER ALLOY

NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).

