Filterless IC for Pager Reception

Description

The CXA1995N is a filterless IC for pager reception. This IC incorporates functions from the 1st mixer to FSK comparator and is suitable for reduction in set size.

Features

- External select filter not required
- External detect discriminator not required
- Two operational amplifiers to compose the data LPF
- Coupling capacitor not required between detector output buffer and LPF operational amplifier
- Reduced-voltage detection function
- Battery saving function
- Reference power supply for operational amplifier and comparator
- Low current consumption (Icc1 $=0.4 \mathrm{~mA}$ at $\mathrm{Vcc} 1=1.3 \mathrm{~V}, \mathrm{lcc} 2=2.1 \mathrm{~mA}$ at $\mathrm{Vcc} 2=2.3 \mathrm{~V})$

Applications

Receivers of paging system

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings

- Supply voltage Vcc 7 V
- Operating temperature Topr -20 to $+75 \quad{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -65 to $+150{ }^{\circ} \mathrm{C}$
- Allowable power dissipation

$$
\begin{array}{lll}
\mathrm{Pd} & 500 & \mathrm{~mW}
\end{array}
$$

Operating Conditions

Supply voltage	Vcc1	1.0 to 3.4	V
	Vcc2	2.0 to 4.0	V

Pin Description

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1	MIX IN	0.9V		1st mixer input.
2	RF GND			GND for 1st mixer
3	Vcc1			Vcc1.
$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { LO Q } \\ & \text { LO I } \end{aligned}$		(4) (6)	1st mixer local signal input. A phase shifter which shifts the phase 90° is composed by connecting this pin to Pin 6. Adjust so that the input levels of Pins 4 and 6 are equal.
$\begin{gathered} 5 \\ 8 \\ 9 \\ 10 \\ 11 \end{gathered}$	NC			Not connected.
7	ST C	0.8V		Determines the capacitor quick charge time connected to Pins 12 and 13. When the capacitance is larger, the quick charge time gets longer.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & \text { STQ } \\ & \text { ST I } \end{aligned}$	0.8 V		Determines the 2nd mixer rise time and the low-band high-pass characteristics, so that this pin has an effect on the reception sensitivity and band-pass width.
14	REG OUT	0.8 V		Regulator output.
15	IF C	0.8 V	(15)	LIM AMP decoupling.
16	DET	0.2 V		FM detector output.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	$\begin{gathered} \text { Pin } \\ \text { voltage } \end{gathered}$	Equivalent circuit	Description
$\begin{aligned} & 17 \\ & 19 \end{aligned}$	AMP1IN AMP2IN	0.2 V		Operational amplifier AMP1 and AMP2 inputs.
18	AMP10UT	0.2 V		Operation amplifier AMP1 output.
20	AMP2OUT	0.2 V		NRZ comparator input. Connects the operational amplifier AMP2 output.
$\begin{aligned} & 21 \\ & 25 \end{aligned}$	NRZ OUT LVAOUT		(21) (25)	NRZ and LVA comparator outputs and they are open collectors.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
22	QD	0.2 V		Connects the capacitor that determines the low cut-off frequency for the entire system.
23	QC			Controls the ON/OFF of the quick charge circuit.
24	GND			GND.
26	BS		(26)	Controls the buttery saving. Setting this pin low suspends the operation of IC.
27	SENSE	0.2 V	(27)	Built-in amplifier input for the constant voltage supply. Controlled so as that this pin becomes 200 mV .
28	Vcc2			Vcc2.

Pin No.	Symbol	Pin voltage		Description	
29	AGC				

Electrical Characteristics

Unless otherwise specified, $\mathrm{Vcc} 1=1.3 \mathrm{~V}, \mathrm{Vcc2}=2.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, $\mathrm{fs}=280 \mathrm{MHz}$, $\mathrm{fmOD}=600 \mathrm{~Hz}$, fDEV $=4.5 \mathrm{kHz}$

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Current consumption 1 (Vcc1)	Icc1	Vcc1 current consumption for $\mathrm{Vcc1}=1.3 \mathrm{~V}$ Excluding the current of Pins 21, 25,26 , external RF amplifier and oscillator current consumption.	200	400	650	$\mu \mathrm{A}$
Current consumption 2 (Vcc2)	Icc2	Vcc2 current consumption for $\mathrm{Vcc} 2=2.3 \mathrm{~V}$	1.3	2.1	3.0	mA
Current consumption 3 (BS)	Iccs	Current consumption for buttery saving		4	20	$\mu \mathrm{A}$
Op amp. input bias current	IBIAS			40	200	nA
Op amp. output voltage amplitude	Vo		140			mVp-p
NRZ output saturation voltage	Vsatnrz				0.4	V
NRZ output leak current	ILNRZ				5.0	$\mu \mathrm{A}$
LVA output saturation voltage	Vsatlva				0.4	V
LVA output leak current	Illva				5.0	$\mu \mathrm{A}$
LVA operating voltage	VLva		1.10	1.15	1.20	V
VB output saturation voltage	Vsatve				0.4	V
VB output current	lout		100			$\mu \mathrm{A}$
Logic input high voltage	VTHBSV		0.9			V
Logic input low voltage	Vtlbsv				0.4	V
Detector output voltage	Vodet		25	50	80	mVrms

Application Circuit

Description of Operation

1. Power Supply

This IC has two power supplies, Vcc2 and Vcc1, to save the electric power. Vcc2 should be used in the condition where its voltage is 600 mV or higher than that of Vcc1.

$$
\mathrm{Vcc} 2 \geq 600 \mathrm{mV}+\mathrm{Vcc} 1
$$

2. Rise Time

The 2nd mixer circuit should rise earlier than the AGC circuit for the IC's stable operation.
Take care to determine the capacitor values connected to Pins 7, 12, 13 and 29.

3. AMP1, AMP2, NRZ, COMP

Two operational amplifiers are built in this IC. One of them is connected internally to an NRZ comparator. These amplifiers are used to compose the LPF which removes the noise in the demodulating signal, and the resulting signal is input to the next-stage NRZ comparator.
The NRZ comparator performs the waveform shaping of this input signal and outputs it as a rectangular wave.
The output stage of the NRZ comparator is an open collector. When the CPU is a CMOS device and the supply voltage is different, the direct interface is possible with the usage shown below.

4. Quick Charge

In order to hasten the rise time from when the power supply is turned On or when reception standby, the CXA1995N features a quick charge circuit.
Therefore, the quick charge circuit eliminates the need to insert a capacitor between the detector output and the LPF as is the case with conventional ICs, but connects a capacitor to Pin 22 to determine the average signal level during steady-state reception. The electrostatic capacitance of the capacitor connected to Pin 22 should be chosen such that the voltage does not vary much due to discharge during battery saving.
Connect a signal for controlling the quick charge circuit to Pin 23. Setting this pin high enables the quick charge mode, setting this pin low enables the steady-state reception mode. Quick charge is used when the power supply is turned on. The battery saving must be set high at the time. Quick charge is also used according to need during battery saving.
Connect Pin 23 to GND when quick charge is not being used.

5. LVACOMP

Pin 25 goes high (open) when the supply voltage becomes lower. Since the output is an open collector, it can be used to directly drive a CMOS device as Pin 21.

Principle of Quick Charge Operation

BUF shown below is the detector buffer amplifier, and AMP1 and AMP2 are the operational amplifiers to construct an LPF. COMP is the NRZ comparator. Coupling on conventional system is performed by placing a capacitor between the detector output buffer and the LPF operational amplifier, so coupling of DC is not performed. Thus, this coupling capacitor must be charged when restoring the system from reception standby mode to reception mode, it takes a little time when the NRZ signal comes from the comparator.
To shorten this rise time, as shown below, the CXA1995N adds a feedback loop from the comparator input to the input circuit of the detector output buffer. This equalizes the average value of the comparator input voltage to the reference voltage, with the quick charge circuit of CHG being set in the feedback loop. Switching the current of the quick charge circuit enables reduction of the rise time.
In this block, CHG is a comparator which compares input voltages and outputs a current based on this comparison. The current on CHG is switched between high and low at Pin 4 . When changing reception standby mode to reception mode, switch the current to high to increase the charge current at C shown below and shorten the time constant. During steady-state reception mode, switch the current to low, lengthening the charge time constant and allowing for stable data retrieval.

S Curve Characteristics

Even if the input frequency is deviated, the feedback is applied to the detector output operating point so as to match it to the comparator reference voltage by the quick charge operation shown above. Therefore, this feedback must be halted in order to evaluate the S curve characteristics.
To execute the evaluation, measure the average voltage on Pin 20 first and input this voltage to Pin 7 from the external power supply, leaving Pin 16 open.

Note on Operation

Great care must be taken because this IC treats the high-frequency signals and the electrostatic discharge strength is weak.

Example of Representative Characteristics

Input/output characteristics with external RF AMP

Intermodulation characteristics with external RF AMP

RF 280 MHz
FM 4.5 kHz
600 Hz rectangular wave
Lo -12dBm SG input
Conditions
$\mathrm{fr} \pm 25 \mathrm{kHz}$ Dev 3 kHz Audio 400 Hz
fr $\pm 50 \mathrm{kHz} \mathrm{Cw}$

Adjacent-channel selectivity characteristics with external RF AMP

Sensitivity band width with external RF AMP

RF
FM 4.5 kHz
600 Hz rectangular wave
Lo 280 MHz
-12dBm input

Local input vs. Sensitivity characteristics with external RF AMP

RF 280 MHz
FM 4.5 kHz
600 Hz rectangular wave

Local input level is values of Pins 4 and 6 actually measured.

S curve characteristics with external RF AMP

RF -50 dBm Cw
Lo 280 MHz
$\quad-12 \mathrm{dBm}$ SG input
Pin 16 Open
Pin 22 225mV fixed (external power supply)

AGC control characteristics with external RF AMP

RF 280 MHz
FM 4.5 kHz
600 Hz rectangular wave
Lo 280 MHz
-12dBm

Pin 29 Open

Quick charge control characteristics

Pin 16 Open
Pin 22 225mV fixed (external power supply)
Pin 23 [H]

NRZ comparator hysteresis characteristics

LVA comparator hysteresis characteristics

Package Outline Unit: mm

PACKAGE STRUCTURE

SONY CODE	SSOP-30P-L01
EIAJ CODE	SSOP030-P-0056-A
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	0.1 g

