High-Speed Transimpedance Amplifier

Description

CXA1685M is a low noise transimpedance amplifier, particularly suitable for fiber-optic system. CXA1685M is fabricated using high-speed bipolar process.

Features

- High transimpedance: $\quad \begin{array}{ll}\text { Q } 11.2 \mathrm{k} \Omega \text { (Typ.) } \\ & \bar{Q} 10.8 \mathrm{k} \Omega \text { (Typ.) }\end{array}$
- Wide band width (-3 dB): Q 177MHz (Typ.)
$\bar{Q} 157 \mathrm{MHz}$ (Typ.)
- Maximum input current:

1 mA

- Low noise:
$1.7 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ (Typ.)

Applications

- SONET/SDH: 155Mb/s
- Fiber channel: $133 \mathrm{Mb} / \mathrm{s}$
- FDDI: 125Mb/s

Absolute Maximum Ratings

- Supply voltage

Vcc - Vee -0.3 to +7.0 V

- Minimum input voltage

Vin
Vee V

- Input current

IIN
-1 to +1 mA

- Output current
($\mathrm{Q} / \overline{\mathrm{Q}}$) (Continuous) lo 0 to 50 mA
(Surge)
0 to 100 mA
- Storage temperature Tstg -65 to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

- DC power supply voltage

Vcc - Vee 4.75 to 5.46 V

- Operating ambient temperature

Ta $\quad 0$ to $+85{ }^{\circ} \mathrm{C}$

Structure

Bipolar silicon monolithic IC

Block Diagram and Pin Assignment

Electrical Characteristics

- DC Electrical Characteristics (Vcc $=\mathrm{VccA}=\mathrm{GND}, \mathrm{VeeS}=\mathrm{VeeDA}=-5.46$ to $-4.75 \mathrm{~V}, \mathrm{Ta}=0$ to $\left.+85^{\circ} \mathrm{C}\right)$

Item		Symbol	Test Condition	Min.	Typ.	Max.	Unit
Supply current		Iee	input pin left open	-15.3	-10.0		mA
Transimpedance	Q	ZTQ		6.6	11.2	14.8	k Ω
	\bar{Q}	Z T_{Q}		6.2	10.8	14.3	
Max. Input Current before clipping		IIN	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	+40			$\mu \mathrm{A}$
Max. Input Current		IIN2		+1000			
Bias votlage	IN	VIN			$V E E+2.5$		V
	Q	VQ	input pin left open		Vee + 1.7		
	$\overline{\mathrm{Q}}$	V $\overline{\mathrm{Q}}$			Vcc-2.4		
	C	Vc			VEE +1.7		
Input capacitance		CIn			1.3		pF

- AC Electrical Characteristics $\quad\left(\mathrm{Vcc}=\mathrm{VccA}=\mathrm{GND}, \mathrm{VeeS}=\mathrm{VeEDA}=-5.46\right.$ to $-4.75 \mathrm{~V}, \mathrm{Ta}=0$ to $\left.+85^{\circ} \mathrm{C}\right)$

Item		Symbol	Test Condition	Min.	Typ.	Max.	Unit.
Bandwidth (-3dB)	Q	f-3dBQ	*1	113	177		MHz
	$\overline{\mathrm{Q}}$	$\mathrm{f}-3 \mathrm{~dB} \overline{\mathrm{Q}}$		109	157		
Input Current Noise Spectral Density (Mean value)		In	$\mathrm{fN}=1 \mathrm{kHz}$ to 156 MHz		1.7		$\mathrm{pA} / \sqrt{\mathrm{HZ}}$

*1 Assumes photodiode capacitance; CPD < 1.0pF, output load capacitance; Cout $=2.0 \mathrm{pF}$,
output load resistor; Q: 620Ω to $\mathrm{Vee}, \overline{\mathrm{Q}}: 1.3 \mathrm{k} \Omega$ to Vee

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Cautions for Handling

1. As the electronic breakdown level is weak, take care to handle.
2. The internal resistor of the output pin does not have the capability of drive ($R L=10 k \Omega$). The terminal resistors must be connected. The resistance value is shown in application circuit.

Typical Performance

Typical frequency characteristics $\left(\mathrm{VCC}-\mathrm{VEE}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Typical Output Wave forms $\left(\mathrm{Vcc}-\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Duty Cycle Distortion vs Input Current

VQ vs lin

VQ vs lin

Test Circuit $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VEE}=-5.0 \mathrm{~V}\right)$

Package Outline

 Unit: mm8PIN SOP (PLASTIC)

DETAIL B : SOLDER

DETAIL B : PALLADIUM
PACKAGE STRUCTURE

SONY CODE	SOP-8P-L03
EIAJ CODE	SOP008-P-0225
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN			
LEAD TREATMENT	SOLDER/PALLADIUM			
PLATING		$	$	LEAD MATERIAL
:---				

NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).

