## Processing IC for Complementary Color Mosaic CCD Camera

## Description

The CXA1391Q/R is a bipolar IC developed for signal processing in complementary color mosaic CCD cameras.

## Features

- Low power consumption (170mW)
- Number of delay lines used for signal processing can be selected according to the system requirements
- The LPF peripheral to 1 H delay line is built in


## Structure

Bipolar silicon monolithic IC

## Applications

Complementary color mosaic CCD cameras

## Block Diagram and Pin Configuration



## Absolute Maximum Ratings

| - Supply voltage | Vcc | 7 | V |
| :--- | :--- | :---: | ---: |
| - Storage temperature | Tstg | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

- Allowable power dissipation
Pd $690 \quad \mathrm{~mW}$
(LQFP: $\mathrm{Ta}=25^{\circ} \mathrm{C}$, without P.C.B)


## Recommended Operating Conditions

$\begin{array}{lllr}\text { - Supply voltage } & \text { Vcc } & 4.75 \text { to } 5.25 & \text { V } \\ \text { - Ambient temperature } & \text { Topr } & -20 \text { to }+75 & { }^{\circ} \mathrm{C}\end{array}$
(Top View)


Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description

| $\begin{aligned} & \text { Pln } \\ & \text { No. } \end{aligned}$ | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 1 | CLP C Y | 3 to 3.5 V |  | Capacitor connecting pin for Y н clamp (Clamp at CLP2) |
| 2 | DL Yh IN | 3.65 V |  | DL Yн signal input pin (Input from 1H delay line) <br> Sig: Typ. 200mV <br> (Positive polarity) |
| 3 | $\begin{aligned} & \text { CLP C } \\ & \text { DL YH } \end{aligned}$ | 2.6 to 3.8 V |  | Capacitor connecting pin for DL Yн clamp (Clamp at CLP4) |
| 4 | $\begin{aligned} & \text { DL YH } \\ & \text { OUT } \end{aligned}$ | 2.7 to 3.1V |  | DL Yн signal output pin (To 1H delay line) <br> Sig: Typ. 400 mV Max. 600 mV (Negative polarity) |

Note) Pin voltage for input and output pins indicate black level.

| $\begin{aligned} & \hline \text { Pln } \\ & \text { No. } \end{aligned}$ | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 5 | Үн OUT1 | 1.9 to 2.3 V |  | YH1 signal output pin <br> Sig: Typ. 1V <br> Max. 1.5 V <br> (Positive polarity) |
| 6 | Yн OUT2 | 1.9 to 2.3 V |  | Үн2 signal output pin <br> Sig: Typ. 1V <br> Max. 1.5V <br> (Positive polarity) |
| 7 | TP | $\begin{aligned} & 2.6 \text { to } 3.0 \mathrm{~V} \\ & \text { (YH) } \\ & 2.5 \text { to } 2.9 \mathrm{~V} \\ & \text { (G) } \end{aligned}$ |  | TP OUT (adjusting pin) 1H mode: Outputs Y $\mathrm{H} 1-$ ҮнО OH mode: Outputs Gch <br> C-slice OUT <br> (Mode selection is executed through Pin 8) |
| 8 | DL Y GAIN | OV (0H Mode) 1.8 to 5 V (1H Mode) |  | DL YH signal gain control pin <br> (For 1 H delay line gain compensation of YH ) TP (Pin 7) mode selection OH Mode: OV 1H Mode: 1.8 to 5 V |
| 54 | Y1 GAIN | 0V: <br> Common <br> control by <br> Pin 57 <br> 1.8 to 5 V <br> Independent <br> control |  | DLY1 signal gain control pin (1H delay line gain compensation) <br> OV: DLY 1 signal gain control is executed in common with DLY2 signal gain control. <br> 1.8 to 5 V : DLY1 signal gain control is executed independently from DLY2 signal gain control. |


| Pln <br> No. | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 9 | CLP4 | $\left.\begin{array}{c} 5 \mathrm{~V} \\ 0 \end{array}\right]$ |  | CLP4 pulse input pin (BLK clamp) (CMOS level input, $\left.\mathrm{V}_{\mathrm{TH}}=2.5 \mathrm{~V}\right)$ |
| 10 | CLP2 | $\left.\begin{array}{c} 5 \mathrm{~V} \\ 0 \end{array}\right]$ | (10) | CLP2 pulse input pin (OPB clamp) (CMOS level input, $\mathrm{V}_{\mathrm{TH}}=2.5 \mathrm{~V}$ ) |
| 11 | VAP OUT | 2.6 to 3.0V |  | V-APCN signal output pin* <br> Sig: Max. 1.2Vp-p |
| 12 | VAP GAIN | 1.8 to 5 V (Control) |  | V-APCN signal output level adjustment pin |
| 13 | CLP C VAP | 3.4 to 3.8 V |  | Capacitor connecting pin for VAP clamp (Clamp at CLP4) |

[^0]| Pln No. | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 14 | VAP SLICE | 1.8 to 5 V (Control) |  | V-APCN signal dark slice volume adjustment pin |
| 15 | CLP C CS | 3.5 to 3.7V |  | Capacitor connecting pin for CS clamp (Clamp at CLP4) |
| 16 | CS IN | C-Couple input 2.9 to 3.3 V |  | AGC CS signal input pin <br> Sig: Max. 1V |


| $\begin{aligned} & \hline \text { Pln } \\ & \text { No. } \end{aligned}$ | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 17 | R-Y GAIN | oV: <br> R-G output 1.8 to 5 V : R-Y output |  | $R-Y$ signal output level adjustment pin Pin 20 Mode select OV: R-G output 1.8 to 5V: R-Y output |
| 18 | B-Y GAIN | ov: <br> B-G output 1.8 to 5 V : B-Y output |  | $B-Y$ signal output level adjustment pin Pin 19 Mode select OV: B-G output 1.8 to 5 V : B-Y output |
| 23 | CS GAIN | 1.8 to 5 V (Control) | $\pi \pi$ | V-APCN CS signal gain control pin |
| 19 | B-Y OUT | $\begin{gathered} 2.75 \text { to } 3.15 \mathrm{~V} \\ \text { (Hue OFF) } \\ 2.35 \text { to } 2.75 \mathrm{~V} \\ \text { (Hue ON) } \end{gathered}$ |  | B-Y signal output pin Sig: Typ. 590mVp-p |
| 20 | R-Y OUT |  |  | R-Y signal output pin Sig: Typ. 800 mVp -p |
| 46 | DLCo OUT | 1.8 to 2.2 V |  | DLCo signal output pin Sig: Typ. 200mVp-p Max. 600mVp-p (Positive polarity) |
| 52 | DLYo OUT | 1.4 to 1.8 V |  | DLYo signal output pin Sig: Typ. 200mVp-p Max. 600 mVp -p (Positive polarity) |
| 53 | DLY1 OUT | 2.8 to 3.2 V |  | DLY1 signal output pin Sig: Typ. 200mVp-p Max. 600mVp-p (Positive polarity) |
| 21 | B-Y Hue | $\begin{aligned} & \text { OV: } \\ & \text { Hue OFF } \end{aligned}$ |  | B-Y hue control pin |
| 22 | R-Y Hue | $\begin{aligned} & \text { OV: } \\ & \text { Hue OFF } \end{aligned}$ |  | $\mathrm{R}-\mathrm{Y}$ hue control pin |


| $\begin{aligned} & \text { Pln } \\ & \text { No. } \end{aligned}$ | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 24 | CS OUT | 1.5 to 1.8 V |  | CS signal output pin <br> Sig: Max. 1V |
| 25 | Yl OUT | 1.9 to 2.3 V |  | Yı signal output pin |
| 26 | GND1 |  |  | GND |
| 27 | C- $\gamma$ CONT | 0V: Typ. $\gamma$ curve |  | Chroma (R.G.B) $\gamma$ curve adjustment pin |


| PIn | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 28 | WB R | 1.4 to 2V | $\sum_{i}^{4} 431$ | $R$ signal output pin WB Mode: <br> Sig: Typ. 400 mV $\gamma$ Mode: <br> Sig: Typ. 500 mV |
| 29 | WB G | 1.4 to 2V |  | G signal output pin WB Mode: <br> Sig: Typ. 400 mV $\gamma$ Mode: Sig: Typ. 500 mV |
| 30 | WB B | 1.4 to 2V | $\pi$ | B signal output pin WB Mode: <br> Sig: Typ. 400 mV $\gamma$ Mode: <br> Sig: Typ. 500 mV |
| 31 | WB DC | 1.4 to 2V |  | When used as output pin, it is an Auto WB DC output pin. <br> Pin 28, 29 and 30 turn to WB mode. <br> When connected to Vcc: Pins 28, 29 and 30 turn to $\gamma$ mode. |
| 32 | C SLICE | ov: <br> Slice OFF | (32) | Chroma (R.G.B) signals dark slice level adjustment pin |
| 33 | C LEVEL | 1.8 to 5 V (Control) |  | Chroma (R.G.B) gain control pin (Chroma modulation factor control for all 3 channels) |
| 47 | C1 GAIN | 1.8 to 5 V (Control) |  | DL $C_{1}$ signal gain control pin <br> ( 1 H delay line gain compensation) |


| $\begin{aligned} & \text { Pln } \\ & \text { No. } \end{aligned}$ | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 34 | CLP C R | 3.0 to 3.6 V |  | Capacitor connecting pin for R WB amplifier clamp (Clamp at CLP2) |
| 35 | CLP C G | 3.0 to 3.6 V |  | Capacitor connecting pin for G WB amplifier clamp (Clamp at CLP2) |
| 36 | CLP C B | 3.0 to 3.6 V |  | Capacitor connecting pin for B WB amplifier clamp (Clamp at CLP2) |
| 37 | R GAIN | 1.8 to 5 V (Control) |  | Rch WB amplifier gain control pin (Pre-WB) |
| 40 | B GAIN | 1.8 to 5 V (Control) |  | Bch WB amplifier gain control pin (Pre-WB) |
| 38 | R CONT | 2.5 to 4.6 V |  | Rch WB amplifier gain control pin |
| 39 | B CONT | 2.5 to 4.6 V |  | Bch WB amplifier gain control pin |


| $\begin{aligned} & \text { Pln } \\ & \text { No. } \end{aligned}$ | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 41 | ID | $\begin{gathered} 5 \mathrm{~V} \\ 0 \end{gathered} \sqrt{\square}$ | (41) | ID pulse (color discrimination pulse) input pin $\left(\right.$ CMOS level $\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ ) $\begin{array}{ll} \mathrm{ID}=\mathrm{L} & \mathrm{C}_{0} \rightarrow \mathrm{CR}_{\mathrm{R}} \\ \mathrm{C}_{1} \rightarrow \mathrm{CB}_{\mathrm{B}} \\ \mathrm{ID}=\mathrm{H} & \mathrm{C}_{0} \rightarrow \mathrm{CB}_{\mathrm{B}} \\ \mathrm{C}_{1} \rightarrow \mathrm{CR}_{2} \end{array}$ |
| 42 | B MTX | 1.8 to 5 V (Control) <br> OV (Preset) |  | B signal operations MTX coefficient adjustment pin (Coefficient 0.22) Refer to Note 2. |
| 43 | $\begin{aligned} & \text { CLP C } \\ & \text { MPX2 } \end{aligned}$ | 2.7 to 3.1 V |  | Capacitor connecting pin |
| 44 | $\begin{aligned} & \text { CLP C } \\ & \text { MPX1 } \end{aligned}$ | 2.7 to 3.1 V |  |  |


| $\begin{aligned} & \hline \text { Pln } \\ & \text { No. } \end{aligned}$ | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 45 | R MTX | 1.8 to 5 V (Control) <br> OV (Preset) |  | R signal operations MTX coefficient adjustment pin (Coefficient 0.617) Refer to Note 2. |
| 48 | DLC 1 IN | $\begin{gathered} \text { C-Couple } \\ \text { input } \\ 3.1 \text { to } 3.5 \mathrm{~V} \end{gathered}$ | $2.6 \mathrm{k} \sum_{i}^{4} 2.6 \mathrm{k} \quad \sum_{i}^{1} 1 \mathrm{k}$ | DL C1 signal input pin Sig: Typ. 150 mV V-p (Negative polarity) |
| 55 | DLY 1 IN | $\begin{gathered} \text { C-Couple } \\ \text { input } \\ 3.6 \text { to } 4.0 \mathrm{~V} \end{gathered}$ |  | DL $Y_{1}$ signal input pin Sig: Typ. 150mVp-p (Negative polarity) |
| 56 | DLY2 IN | $\begin{gathered} \text { C-Couple } \\ \text { input } \\ 3.6 \text { to } 4.0 \mathrm{~V} \end{gathered}$ |  | DL $Y_{2}$ signal input pin Sig: Typ. 150 mV p-p (Negative polarity) |
| 49 | S2 IN | 1.9 V | (49) | S2 signal input pin <br> Sig: Typ. 500 mV Max. 1500mV |
| 50 | S1 IN | 1.9 V |  | S1 signal input pin <br> Sig: Typ. 500 mV Max. 1500mV |


| PIn <br> No. | Symbol | Pin voltage |  | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Pln <br> No. | Symbol | Pin voltage | Equivalent circuit | Description |
| :---: | :---: | :---: | :---: | :---: |
| 61 | LPF Adj. 3 | 1.8 to 2.2V |  | Connecting pin of the external resistor that determines the characteristics of the LPF for V-APCN. <br> (External resistor in the range of 15 to $62 \mathrm{k} \Omega$ ) When connected to Vcc, the LPF for V-APCN turns OFF. |
| 62 | Vcc |  |  | Power supply 5V (Typ.) |
| 63 | Y- $\gamma$ CONT | OV <br> (Typ. $\gamma$ curve) <br> 1.8 to 5 V (Control) |  | Yн $\gamma$ curve adjustment |
| 64 | Yн IN | 0.95V |  | Yн signal input <br> Sig: Typ. 220mV <br> Max. 660mV |

## Electrical Characteristics

| Item |  | Symbol | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current consumption |  | ID |  | 25 | 34.5 | 43 | mA |
| S2-S1 Amp Gain |  | SSG | Input: S1 IN = -62.5mV, S2 IN = 62.5mV Calculations: DLCo OUT/S1 IN | -3 | -1.95 | -1 | dB |
| DLC ${ }_{1}$ <br> gain control | Max. | DLC ${ }_{1} \mathrm{H}$ | $\begin{aligned} & \text { Input: } \mathrm{DLC}_{1} 1 \mathrm{~N}=100 \mathrm{mV} \\ & \text { Conditions: } \mathrm{C}_{1} \text { Gain }=5 \mathrm{~V} \\ & \text { C-level }=5 \mathrm{~V} \\ & \text { Calculations: (WB-R/DLC1N) -CG Note2) } \end{aligned}$ | 6 | 7 | 9 | dB |
|  | Min. | DLC1L | Conditions: $\mathrm{C}_{1}$ Gain $=0 \mathrm{~V}$ <br> (Others same as DLC ${ }_{1} \mathrm{H}$ ) | -2 | -0.85 | 0 | dB |
| S1+S2 Amp |  | SAG | Input: S1 IN = 500mV <br> Calculations: DLYoOUT/S1 IN | -15 | -14 | -13 | dB |
| Chroma matrix (Gch) <br> Note 3) | Gch Y | GY | $\begin{aligned} & \text { Input: S1 IN = S2 IN = 300mV } \\ & \text { Conditions: C-level = 5V } \\ & \text { Calculations: WB-G (ID = H, L average) } \end{aligned}$ | 80 | 100 | 120 | mV |
|  | Cr/Y | GCR | Input: S1 IN = S2 IN $=62.5 \mathrm{mV}$ <br> Conditions: C-level $=5 \mathrm{~V}$ <br> Calculations: WB-G/GY (ID = L) | 0.9 | 1 | 1.1 | - |
|  | -Св/Y | GCв | $\mathrm{ID}=\mathrm{H}$ (Others same as GCR) | -1.1 | -1 | -0.9 | - |
| Chroma matrix (Rch) <br> Note 3) | Rch Cr | RCr | Input: S1 IN $=-62.5 \mathrm{mV}$, S2 IN $=62.5 \mathrm{mV}$ <br> Conditions: C-level $=5 \mathrm{~V}$ <br> Calculations: WB-R (ID = L) | 70 | 85 | 100 | mV |
|  | ```Y (Preset)``` | RYP | Input: S1 IN = S2 IN = 500mV <br> Conditions: C-level $=5 \mathrm{~V}$ <br> Calculations: WB-R/RCr (ID = H) | 0.15 | 0.168 | 0.186 | - |
|  | Y (Max.) | RYH | RMTX $=5 \mathrm{~V}$ (Others same as RYP) | 0.22 | 0.25 | 0.27 | - |
|  | Y (Min.) | RYL | RMTX $=1.8 \mathrm{~V}$ (Others same as RYP) | 0.11 | 0.125 | 0.14 | - |
| Chroma matrix (Bch) <br> Note 3) | Bch-Cb | ВСв | Input: S1 IN = 62.5mV, S2 IN =-62.5mV <br> Conditions: C-level $=5 \mathrm{~V}$ <br> Calculations: WB-B (ID = H) | 80 | 100 | 120 | mV |
|  | Y (Preset) | BYP | Input: S1 IN = S2 IN = 500mV <br> Conditions: C-level $=5 \mathrm{~V}$ <br> Calculations: WB-B/BCв (ID = H) | 0.2 | 0.22 | 0.24 | - |
|  | Y (Max.) | BYH | BMTX $=5 \mathrm{~V}$ (Others same as BYP) | 0.31 | 0.34 | 0.37 | - |
|  | $Y$ (Min.) | BYL | BMTX $=1.8 \mathrm{~V}$ (Others same as BYP) | 0.13 | 0.15 | 0.17 | - |


| Item |  | Symbol | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WB GAIN | RCONT Max. | RCH | Input: DLC.1N $=-200 \mathrm{mV}$ <br> Conditions: C-level $=5 \mathrm{~V}$ $\mathrm{RCONT}=4.6 \mathrm{~V}(\mathrm{ID}=\mathrm{H})$ <br> Calculations: WB-R/WB-RTyp. Note 4) WB-R Typ. is the tested output of WB-R when RCONT is set to 4 V (Other inputs, conditions same as RCH) | 7.5 | 8.2 | 8.5 | dB |
|  | RCONT Min. | RCL | Test: RCONT = 2.5 V <br> (Others same as RCH) | -8.4 | -7.9 | -7.4 | dB |
|  | BCONT Max. | BCH | Input: DLC.IN $=150 \mathrm{mV}$ <br> Conditions: C-level $=5 \mathrm{~V}$ $\mathrm{BCONT}=4.6 \mathrm{~V}(\mathrm{ID}=\mathrm{L})$ <br> Calculations: WB-B/WB-BTyp. Note 4) WB-B Typ. is the tested output of WB-B when BCONT is set to $4 V$ (Other inputs, conditions same as BCH ) | 7.5 | 8.2 | 8.5 | dB |
|  | BCONT Min. | BCL | Test: BCONT = 2.5 V <br> (Others same as BCH) | -8.4 | -7.9 | -7.4 | dB |
|  | RGAIN Max. | RGH | Input: DLC 1 IN $=-200 \mathrm{mV}$ <br> Conditions: $\mathrm{RCONT}=2.5 \mathrm{~V}$ RGAIN $=5 \mathrm{~V}$ <br> C-level $=5 \mathrm{~V}(\mathrm{ID}=\mathrm{H})$ <br> Calculations: WB-R/WB-RMin. <br> WB-R Min. is the tested WB-R, when tested under the same conditions as RCL | 8.6 | 9.2 | - | dB |
|  | BGAIN Max. | BGH | Input: DLC 1 IN $=150 \mathrm{mV}$ <br> Conditions: $\mathrm{BCONT}=2.5 \mathrm{~V} \quad \mathrm{BGAIN}=5 \mathrm{~V}$ <br> C-level $=5 \mathrm{~V}(\mathrm{ID}=\mathrm{L})$ <br> Calculations: WB-B/WB-BMin. <br> WB-B Min. is the tested WB-B, when tested under the same conditions as BCL | 11.4 | 12.2 | - | dB |


|  | Item | Symbol | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bch color difference matrix <br> Note 5) | $\begin{aligned} & \text { R-G OUT/ } \\ & \text { WB-B } \end{aligned}$ | BMBY | $\begin{aligned} & \text { Input: } \mathrm{S} 11 \mathrm{~N}=200 \mathrm{mV} \text { S2IN }=160 \mathrm{mV} \\ & \text { DLCIIN }=220 \mathrm{mV} \\ & \text { Conditions: } \mathrm{C}-\gamma \text { CONT }=\text { WB DC }= \\ & \text { C-Slice }=\text { C-level }=5 \mathrm{~V} \\ & \text { RCONT }=2.5 \mathrm{~V} \\ & \text { BCONT }=4.6 \mathrm{~V}(\mathrm{ID}=\mathrm{L}) \end{aligned}$ Calculations: B-Y OUT/WB-B | 0.4 | 0.44 | 0.48 | - |
|  | $\begin{aligned} & \text { R-Y OUT/ } \\ & \text { WB-B } \end{aligned}$ | BMRY | Conditions: $\mathrm{R}-\mathrm{Y}$ GAIN $=1.8 \mathrm{~V}$ <br> Calculations: $\mathrm{R}-\mathrm{Y}$ OUT/WB-B <br> (Others same as BMBY) | -0.24 | -0.21 | -0.17 | - |
|  | B-Y GAIN Max. | BMG | Conditions: $\mathrm{BCONT}=4 \mathrm{~V}$ <br> 1. B-Y OUT is tested when B-Y gain $=0 \mathrm{~V}$ and taken as A . (Other conditions are the same as BMBY) <br> 2. B-Y OUT is tested when B-Y gain $=5 \mathrm{~V}$ and taken as B . (Other conditions are the same as BMBY) <br> Calculations: B/A | 3.0 | 3.3 | - | - |
|  | B-Y Hue Max. | BMHH | Conditions: $\mathrm{B}-\mathrm{Y}$ HUE $=1.8 \mathrm{~V}$ <br> (Others same as BMBY) <br> Calculations: R-Y OUT/B-Y Typ. <br> $B-Y$ Typ. is the value of the tested $B-Y$ OUT when $\mathrm{B}-\mathrm{Y}$ hue $=0 \mathrm{~V}$ (Other conditions are the same as BMBY). Note 6) | 0.58 | 0.68 | - | - |
|  | B-Y Hue Min. | BMHL | $\mathrm{B}-\mathrm{Y} H U E=5 \mathrm{~V}$ <br> (Others same as BMHH) | - | -0.67 | -0.58 | - |
| Gch color difference matrix <br> Note 5) | R-Y/R-G | GMR | Input: $\mathrm{S} 1 \mathrm{IN}=830 \mathrm{mV} \mathrm{S} 2 \mathrm{IN}=660 \mathrm{mV}$ DLC 1 IN $=-230 \mathrm{mV}$ <br> Conditions: $\mathrm{WB}-\mathrm{DC}=\mathrm{C}$-level $=5 \mathrm{~V}$ $\text { RCONT }=\text { BCONT }=2.5 \mathrm{~V}$ <br> 1. $R-Y$ OUT is tested when $R-Y$ gain $=0 \mathrm{~V}$ and taken as A . <br> 2. R-Y OUT is tested when $\mathrm{R}-\mathrm{Y}$ gain $=1.8 \mathrm{~V}$ and taken as B . <br> Calculations: B/A | 0.81 | 0.85 | 0.89 | - |
|  | B-Y/B-G | GMB | Input: (The same as GMR) Conditions: <br> 1. $B-Y$ OUT is tested when $B-Y$ gain $=0 \mathrm{~V}$ and taken as A . <br> 2. $B-Y$ OUT is tested when $R-Y$ gain $=1.8 \mathrm{~V}$ and taken as B . (Others same as GMR) <br> Calculations: B/A | 0.63 | 0.66 | 0.7 | - |


| Item |  | Symbol | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C-Slice | Typ.-Min. | CSLL | Input: $\mathrm{DLY} 1 \mathrm{IN}=-400 \mathrm{mV}$ <br> Conditions: C-level $=5 \mathrm{~V}$ <br> $\mathrm{Y} 1 \mathrm{GAIN}=1.8 \mathrm{~V}$ <br> C-Slice $=1.8 \mathrm{~V}(\mathrm{ID}=\mathrm{H})$ <br> Calculations: C-Slice Typ. -TP <br> C-Slice Typ. is the TP output of <br> C-Slice $=0 \mathrm{~V}$. | 0 | 5 | 15 | mV |
|  | Typ.-Max. | CSLH | Conditions: C-Slice $=5 \mathrm{~V}$ (Others same as CSLL) | 95 | 120 | 145 | mV |
| Gch $\gamma$ curve | $\begin{aligned} & \mathrm{C}-\gamma \mathrm{CONT}=0 \mathrm{~V} \\ & \mathrm{Gch}-\mathrm{WB}=400 \mathrm{mV} \end{aligned}$ | $\gamma$ Typ. | Input: DLY $1 \mathrm{IN}=-200 \mathrm{mV}$ <br> $\mathrm{S} 1 \mathrm{IN}=\mathrm{S} 2 \mathrm{IN}=500 \mathrm{mV}$ <br> Conditions: $\mathrm{Y}_{1} \mathrm{GAIN}=1.8 \mathrm{~V}$ <br> C-level is valied and <br> adjusted to obtain 400 mV at <br> WB-G. <br> After that C-level is fixed <br> during test. <br> WB-DC is set to OPEN during C-level adjusted and set to 5 V during test. <br> Calculations: WB-G is tested. | 450 | 500 | 550 | mV |
|  | $\begin{aligned} & \mathrm{C}-\gamma \mathrm{CONT}=0 \mathrm{~V} \\ & \mathrm{Gch}-\mathrm{WB}=800 \mathrm{mV} \end{aligned}$ | $\gamma$ L8 | ```Input: DLY1NN = -400mV S1IN = S2IN = 1000mV``` Conditions: Same as $\gamma$ Typ. Calculations: WB-G/ $\gamma$ Typ. | 1.13 | 1.2 | 1.25 | - |
|  | $\begin{aligned} & \mathrm{C}-\gamma \mathrm{CONT}=0 \mathrm{~V} \\ & \mathrm{Gch}-\mathrm{WB}=100 \mathrm{mV} \end{aligned}$ | $\gamma \mathrm{L} 1$ | $\begin{aligned} & \text { Input: } \text { DLY } 1 \mathrm{IN}=-50 \mathrm{mV} \\ & \text { S1IN }=S 21 \mathrm{~N}=125 \mathrm{mV} \\ & \text { (Others same as } \gamma \mathrm{L} 8 \text { ) } \end{aligned}$ | 0.36 | 0.4 | 0.44 | - |
|  | $\begin{aligned} & \mathrm{C}-\gamma \mathrm{CONT}=1.8 \mathrm{~V} \\ & \mathrm{Gch}-\mathrm{WB}=400 \mathrm{mV} \end{aligned}$ | $\gamma \mathrm{M} 4$ | ```Input: DLY,IN = -200mV S1IN = S2IN = 500mV Conditions: }\textrm{C}\gamma\textrm{CONT}=1.8\textrm{V Calculations: WB-G/\gamma Typ.``` | 0.9 | 1 | 1.1 | - |
|  | $\begin{aligned} & \mathrm{C}-\gamma \mathrm{CONT}=1.8 \mathrm{~V} \\ & \mathrm{Gch}-\mathrm{WB}=800 \mathrm{mV} \end{aligned}$ | $\gamma \mathrm{M} 8$ | Input: DLY $1 \mathrm{~N}=-400 \mathrm{mV}$ S1IN = S2IN $=1000 \mathrm{mV}$ (Others same as $\gamma \mathrm{M} 4$ ) | 1.13 | 1.2 | 1.25 | - |
|  | $\begin{aligned} & \mathrm{C}-\gamma \mathrm{CONT}=1.8 \mathrm{~V} \\ & \mathrm{Gch}-\mathrm{WB}=100 \mathrm{mV} \end{aligned}$ | $\gamma \mathrm{M} 1$ |  | 0.45 | 0.5 | 0.55 | - |
|  | $\mathrm{C}-\gamma \mathrm{CONT}=5 \mathrm{~V}$ Gch-WB=400mV | $\gamma \mathrm{H} 4$ | ```Input: DLY IN = -200mV S1IN = S2IN = 500mV Conditions: }\textrm{C}\boldsymbol{\gamma}\mathrm{ CONT =1.8V Calculations: WB-G/\gamma Typ.``` | 0.9 | 1 | 1.1 | - |
|  | $\begin{aligned} & \mathrm{C}-\gamma \mathrm{CONT}=5 \mathrm{~V} \\ & \mathrm{Gch}-\mathrm{WB}=800 \mathrm{mV} \end{aligned}$ | $\gamma \mathrm{H} 8$ | Input: DLY $1 \mathrm{IN}=-400 \mathrm{mV}$ S1IN = S2IN $=1000 \mathrm{mV}$ (Others same as $\gamma \mathrm{H} 4$ ) | 1.13 | 1.2 | 1.25 | - |
|  | $\begin{aligned} & \text { C- } \gamma \text { CONT }=5 \mathrm{~V} \\ & \text { Gch-WB }=100 \mathrm{mV} \end{aligned}$ | $\gamma \mathrm{H} 1$ | $\begin{aligned} & \hline \text { Input: } \text { DLY } 1 \mathrm{~N}=-50 \mathrm{mV} \\ & \text { S1IN }=\text { S } 21 \mathrm{~N}=125 \mathrm{mV} \\ & \text { (Others same as } \gamma \mathrm{H} 4 \text { ) } \end{aligned}$ | 0.26 | 0.3 | 0.35 | - |


| Item |  | Symbol | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Y} \gamma$ | Y 1.0 (Typ.) | $\mathrm{Y} \gamma \mathrm{T}$ | Input: YHIN = 220mV <br> Calculations: DLYHOUT | -440 | -400 | -360 | mV |
|  | Y $2.0 / \mathrm{P} \gamma 1.0$ | Y 2.0 | Input: Y IIN $=440 \mathrm{mV}$ <br> Calculations: DLYнOUT/Y $\gamma$ T | 1.23 | 1.37 | 1.51 | - |
|  | Y $70.5 / \mathrm{Y} \gamma 1.0$ | Yp0.5 | Input: YHIN = 110 mV <br> Calculations: DLYнOUT/Y $\gamma$ T | 0.59 | 0.66 | 0.73 | - |
|  | $\begin{aligned} & \text { Yү0.5 (Max.)/ } \\ & \text { Y } \gamma 1.0 \end{aligned}$ | $\mathrm{Y} \gamma \mathrm{H}$ | Input: Y YIN $=110 \mathrm{mV}$ <br> Conditions: $\mathrm{Y} \gamma \mathrm{CONT}=1.8 \mathrm{~V}$ <br> Calculations: DLY YOUT/Y $\gamma$ T | 0.64 | 0.71 | 0.78 | - |
|  | $\begin{aligned} & \text { Yү0.5 (Min.)/ } \\ & \text { Y } \gamma 1.0 \end{aligned}$ | Y L L | $\begin{aligned} & \hline \text { Input: } \mathrm{YHIN}=110 \mathrm{mV} \\ & \text { Conditions: } \mathrm{Y} \gamma \text { CONT }=5 \mathrm{~V} \\ & \text { Calculations: DLYHOUT/Y } \gamma \mathrm{T} \end{aligned}$ | 0.54 | 0.6 | 0.66 | - |
| TP | TP (YH) | TPY | Input: YHIN = 220 mV <br> Conditions: DLYHGAIN $=1.8 \mathrm{~V}$ <br> Calculations: TP/DLYнOUT | -5 | -4 | -3 | dB |
|  | TP (DLYH) | TPDY | Input: DLY HIN $=$ Y $\gamma \mathrm{T} \times 0.7$ <br> Conditions: Same as TPY <br> Calculations: TP/-DLYHOUT Note 7) | -5 | -4 | -3 | dB |
|  | TP (GWBS) | TPG | Conditions: $\mathrm{Y} 1 \mathrm{GAIN}=1.8 \mathrm{~V}$ Calculations: TP/WB-G | -2 | 0 | 2 | dB |
| Yн AMP | Min. Gain | YLG | $\begin{aligned} & \text { Input: } \text { YHIN }=220 \mathrm{mV} \\ & \text { DLYHIN }=-[\mathrm{Y} \boldsymbol{T} \times-3.5 \mathrm{~dB}] \end{aligned}$ <br> Conditions: $\operatorname{DLYHGAIN}=1.8 \mathrm{~V}$ <br> Calculations: TP is tested to check that the signal level is below 0 mV in relation to black level. Note 8) | - | - | 3.5 | dB |
|  | Max. Gain | YHG | $\begin{aligned} & \text { Input: } \text { YHIN }=220 \mathrm{mV} \\ & \text { DLYHIN }=-[\mathrm{Y} \gamma \mathrm{~T} \times-12 \mathrm{~dB}] \end{aligned}$ <br> Conditions: $\mathrm{DLYHGAIN}=5 \mathrm{~V}$ <br> Calculations: TPTP is tested to check that the signal level is over 0 mV in relation to black level. Note 8) | 12 | - | - | dB |
| Chroma level Max./Min. |  | GCL | Input: DLC 1 IN $=200 \mathrm{mV}$ Conditions: <br> 1. WB-G is tested when C-level $=5 \mathrm{~V}$ and taken as GC-level Min. <br> 2. WB-G is tested when C-level $=1.8 \mathrm{~V}$ and taken as GC-level Max. <br> (Both 1 and 2 test at ID-H.) <br> Calculations: GC-level Max. / GC-level Min. | 1.55 | 1.65 | 1.75 | - |
| WB DC |  | WDDC | Test: WB-DC | 1.4 | 1.6 | 2 | V |


| Item |  | Symbol | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|YL <br> Note 5) | YLOUT/ RyOUT | YLR | $\begin{aligned} \hline \text { Input: } \mathrm{S} 1 \mathrm{~N}=150 \mathrm{mV} \quad \mathrm{~S} 2 \mathrm{IN}=450 \mathrm{mV} \\ \text { Conditions: } \mathrm{C}-\gamma \mathrm{CONT}=\mathrm{WB} \\ \mathrm{DC}=\mathrm{C}-\text { Slice }= \\ \mathrm{C}-\text {-level }=5 \mathrm{~V} \\ \text { RCONT }=4.6 \mathrm{~V} \text { BCONT }=2.5 \mathrm{~V} \\ \text { BGAIN }=1.8 \mathrm{~V}(\mathrm{ID}=\mathrm{L}) \end{aligned}$ <br> Calculations: YLOUT/WB-R | 0.27 | 0.3 | 0.34 | - |
|  | Ylout/ BrOUT | YıB | $\begin{aligned} & \text { Input: S1IN }=200 \mathrm{mV} \quad \mathrm{~S} 2 \mathrm{IN}=160 \mathrm{mV} \\ & \text { DLC } 1 \mathrm{~N}=220 \mathrm{mV} \\ & \text { Conditions: } \mathrm{C}-\gamma \mathrm{CONT}=\mathrm{WB} \\ & \text { DC }=\mathrm{C} \text {-Slice }= \\ & \text { C-level }=5 \mathrm{~V} \quad \mathrm{RCONT}=2.5 \mathrm{~V} \\ & \text { BCONT }=4.6 \mathrm{~V}(\mathrm{ID}=\mathrm{L}) \end{aligned}$ Calculations: YLOUT/WB-B | 0.08 | 0.1 | 0.12 | - |
|  | Ylout/ Grout | YLG |  | 0.54 | 0.6 | 0.66 | - |
| YhOUT1 (OH mode) |  | YH1Z | Input: YHIN = 220 mV <br> Calculations: YHOUT1 is tested. | 900 | 1000 | 1100 | mV |
| YнОUT1 | 1H/OH | YH1O | Input: DLYHIN $=-(\mathrm{Y} \gamma \mathrm{T} \times-4 \mathrm{~dB})$ <br> Conditions: DLYHGAIN $=1.8 \mathrm{~V}$ <br> Calculations: YHOUT1/YH1Z Note 8) | -1 | 0 | 1 | dB |
| YhOUT2 (0Н) /YнOUT1 |  | YH2Z | $\begin{aligned} & \text { Input: YHIN }=220 \mathrm{mV} \\ & \text { Calculations: } \mathrm{YHOUT} 2 / \mathrm{YH} 1 \mathrm{Z} \end{aligned}$ | -1 | 0 | 1 | dB |
| YнOUT2 (1H)/YнOUT1 |  | YH2O | Input: YHiN = 220 mV <br> Conditions: DLYHGAIN $=1.8 \mathrm{~V}$ <br> Calculations: ҮнOUT2/YнOUT2Typ. <br> ҮнOUT2Typ. is ҮнOUT2 output tested at YH2Z. | -6.5 | -6 | -5.5 | dB |
| VAP Typ. <br> Note 9) |  | VAPT | $\begin{gathered} \text { Input: } \mathrm{S} 1 \mathrm{IN}=\mathrm{S} 2 \mathrm{IN}=125 \mathrm{mV} \\ \text { Conditions: VAP GAIN }=1.8 \mathrm{~V} \\ \text { VAP Slice }=1.8 \mathrm{~V} \\ \text { Y2 GAIN }=1.8 \mathrm{~V} \end{gathered}$ <br> Calculations: VAP OUT is tested. | -250 | -200 | -150 | mV |
| VAP Slice <br> Note 9) |  | VS | Input: S1IN = S2IN $=1000 \mathrm{mV}$ <br> Conditions: $\mathrm{Y}_{2}$ GAIN $=1.8 \mathrm{~V}$ <br> 1. VAP OUT is tested when VAP Slice $=1.8 \mathrm{~V}$ and taken as SMin. <br> 2. VAP OUT is tested when VAP Slice=5V and taken as SMax. <br> Calculations: SMax.-SMin. Note 10) | 256 | 320 | 384 | mV |


| Item |  | Symbol | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DLY1 <br> gain <br> Note 11) | Min. | DY1L | Input: S1IN $=\mathrm{S} 21 \mathrm{~N}=500 \mathrm{mV}$ <br> DLY 1 IN $=-200 \mathrm{mV}$ <br> Conditions: VAP GAIN = VAP Slice $=$ Y 1 GAIN $=1.8 \mathrm{~V}$ <br> Calculations: VAP-OUT is tested to check that the signal level is over 0 mV in relation to black level. | - | - | 0 | dB |
|  | Max. | DY1H | C.8nditions: VAP GAIN = VAP Slice $=$ $\mathrm{Y} 1 \mathrm{GAIN}=5 \mathrm{~V}$ <br> Calculations: VAP-OUT is tested to check that the signal level is below 0 mV in relation to black level. | 5 | - | - | dB |
| DLY2 <br> gain <br> Note 11) | Min. | DY2L | Input: S1IN = S2IN $=-167 \mathrm{mV}$ <br> DLY2IN $=-66.7 \mathrm{mV}$ <br> Conditions: VAP GAIN = VAP <br> Slice $=Y_{1}$ GAIN $=Y_{2}$ GAIN $=1.8 \mathrm{~V}$ <br> Calculations: VAP-OUT is tested to check that the signal level is over 0 mV in relation to black level. | - | - | 0 | dB |
|  | Max. | DY2H | Input: S1IN = S2IN $=-167 \mathrm{mV}$ <br> DLY2IN $=-37.5 \mathrm{mV}$ <br> Conditions: Y2GAIN $=5 \mathrm{~V}$ (Others same as DY2L) <br> Calculations: VAP-OUT is tested to check that the signal level is below 0 mV in relation to black level. | 5 | - | - | dB |
| CS <br> Note 12) | VCS Typ. | VCST | $\begin{aligned} & \text { Input: S1IN = S2IN }=167 \mathrm{mV} \\ & \text { Conditions: } \text { Y } 1 \text { GAIN }=\text { Y Y GAIN }=1.8 \mathrm{~V} \\ & \text { CS GAIN }=5 \mathrm{~V} \\ & \text { Calculations: } \text { CS OUT is tested. } \\ & \hline \end{aligned}$ | 90 | 120 | 150 | mV |
|  | VCS Min. | VCSL | Conditions: CS GAIN $=0 \mathrm{~V}$ <br> (Others same as VCST) <br> Calculations: CS OUTVCST | - | 0 | 0.05 | - |
|  | VCS Max. | VCSH | Conditions: CS GAIN $=1.8 \mathrm{~V}$ (Others same as VCSL) | 4.4 |  | - | - |
|  | VCS Typ. | CST | Input: $\mathrm{CS}-\mathrm{IN}=500 \mathrm{mV}$ | 440 | 465 | 490 | mV |

Note 1) For pins without specific instructions regarding input, feed the DC value shown on the Test Circuit. Calculations are mentioned utilizing the pin name or the electrical characteristics symbols. Otherwise, for exceptional notations explanatory notes, are given with every case.

Note 2) In this item, the gain of DLC1 amplifier exclusively is calculated. CG is the gain of the system from DLC $C_{1}$ IN to WB-R from which DLC ${ }_{1}$ GC amplifier gain has been excluded.
-CG calculating method-
In the actual calculation, the system on $\mathrm{C}_{0}$ side is utilized.

$$
\begin{aligned}
& \text { Input: S1IN }=-62.5 \mathrm{mV} \quad \mathrm{~S} 2 \mathrm{IN}=62.5 \mathrm{mV} \\
& \text { Condition: Same as DLC1H } \\
& \text { Calculations: } \mathrm{CG}=20 \log \text { (WB-R/DLCoOUT) }
\end{aligned}
$$

Note 3) Chroma matrix operations

$$
\begin{array}{ll}
R=2\left[C_{R}+\alpha Y\right] & \alpha \text { : Control with RMTX (Preset 0.167) } \\
G=Y-\left(C_{R}+C_{B}\right) & \\
B=2\left[C_{B}+B(Y-C)\right] & B \text { : Control with BMTX (Preset 0.22) }
\end{array}
$$

Note 4) With the typical gain taken when R CONT is at 4 V , compare with the gain during Max. and Min. The same for B CONT.

Note 5) Adjustment and testing is performed so that signals are output only for each of R, G, B channels respectively.

Note 6) Comparison with B-Y OUT when R-Y HUE = OV (HUE OFF).
The same for B-Y HUE.
Note 7) The compensation of difference in gain of $\mathrm{YHO}^{2}$ and $\mathrm{Y}_{\mathrm{H}} 1$ is as follows.

1) At DLYн GAIN $=1.8 \mathrm{~V}$, DLYн amplifier gain is 3 dB .
2) Test DLYн OUT (tested at YrT ) when $\mathrm{Y}_{\mathrm{H}} \mathrm{IN}=220 \mathrm{mV}$ signal is input.
3) The difference in gain between $\mathrm{Y}_{\mathrm{H}} \mathbf{O}$ and $\mathrm{Y}_{\mathrm{H} 1}$ is compensated by inputting the signal as -3 dB to DLYн IN.

Note 8) The amplifier input is varied and the gain confirmed.
Note 9) VAP (Vertical Aperture Compensation)
Note 10) Dark slice variable volume. (Output level difference between the value slice volume at Max. and slice volume at Min.)

Note 11) Utilizing V-APCN 2 H mode, DLY ${ }_{1}$ amplifier exclusive gain is obtained through operations. However, as the amplifier gain cannot be tested directly, only the upper and lower limits of the gain control are checked according to the following method.
(a) Lower limit check

S1 $\mathrm{IN}=\mathrm{S} 2 \mathrm{IN}=500 \mathrm{mV}$ (At that time KNEE circuit input turns to 200 mV )
DLY $1 \mathrm{IN}=-200 \mathrm{mV}$ (For others refer to the conditions chart)
In this condition, if we have VAP OUT $\geq 0$, this indicates that $\operatorname{DLY} 1$ amplifier is below 0 dB .
(b) Upper limit check

S1 IN = S2 $\operatorname{IN}=500 \mathrm{mV}$
DLY $1 \mathbb{N}=-110 \mathrm{mV}$ (in (a) the -5 dB of -200 mV )
In this condition, if we have VAP OUT $\leq 0$, this indicates that DLY 1 amplifier is above 5 dB .
Note 12) CS (Chroma Suppress)

Timing Chart for Testing

Test Circuit (Typ. setting)


Standard Control Characteristics $\left(\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$




VAP SLICE control characteristics



## Standard Design Data



V-APCN Knee (standardize) (mV)



Pre-Filter Adjust characteristics $\quad\left(\mathrm{S} 1, \mathrm{~S} 2 \rightarrow \begin{array}{l}\mathrm{DL} \text { Y0 out } \\ \mathrm{DL} \mathrm{C0} \text { out }\end{array}\right)$

<Cut Off> (fc: -3dB)


CS-VAP Adjust characteristics (S1, S2 $\rightarrow$ CS OUT) <Group Delay>

<Cut Off> (fc: -3dB)


Rext [LPF ADJ2 ( 60 PIN ) ] ( $\Omega$ )

CS-Y LPF Adjust characteristics (CS IN $\rightarrow$ CS OUT) <Group Delay>

<Cut Off> (fc: -3dB)


Rext [LPF ADJ2 ( 60 PIN ) ] ( $\Omega$ )
VAP LPF Adjust characteristics

VAP LPF Adjust characteristics (S1, S2 $\rightarrow$ VAP OUT) <Group Delay>



Rext [LPF ADJ3 (61 PIN) ] ( $\Omega$ )


Package Outline
Unit: mm

CXA1391Q

64PIN QFP(PLASTIC)


CXA1391R

64PIN LQFP (PLASTIC)


| SONY CODE | LQFP-64P-L01 |
| :--- | :---: |
| EIAJ CODE | *QFP064-P-1010-A |
| JEDEC CODE |  |


| PACKAGE MATERIAL | EPOXY/PHENOL RESIN |
| :--- | :--- |
| LEAD TREATMENT | SOLDER PLATING |
| LEAD MATERIAL | 42 ALLOY |
| PACKAGE WEIGHT | 0.3 g |


[^0]:    * V-APCN: Vertical Aperture Compensation

