SON Y.

10/9/8-bit 160MSPS D/A Converter

For the availability of this product, please contact the sales office.

Descriptions

A series of D/A converters CX20201A CX20202A convert binary data into an analog signal at rates higher than 160 MHz . The devices include input data registers and have a capability of driving 75 ohms load. Three versions with linearity specifications of 10,9 or 8 bits are available for each mode
These D/A converter ICs can be used in signa processings which require high speed and high resolution D/A conversions such as high quality displays, high definition video systems, digital measurement instruments and radars.

$$
\begin{array}{lr}
\text { CX20201A-1/CX20202A-1 } & \text { 10-bit } \\
\text { CX20201A-2/CX20202A-2 } & 9 \text {-bit }
\end{array}
$$

Features

- High speed

160 MHz

- High accuracy

10 bit
(CX20201A-1)
CX20202A-1)
28pin SOP(Plastic) 28 pin DIP(Plastic)

- Low glitch energy
- Low power consumption
- Logic invert input
- $75-\Omega$ direct drive capability
- Analog multiplying function
Structure
Bipolar silicon monolithic IC.

Block Diagram and Pin Configuration (Top View)

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Supply voltage VEE -7
- Digital input voltage $\mathrm{VI}^{2}+0.3$ to $\mathrm{VEE} \quad \mathrm{V}$
- Reference input Vref +0.3 to Vee
voltage
- Analog output current lout 20 mA
- Operating temperature Tope -20 to $+75{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -55 to $+150^{\circ} \mathrm{C}$
- Allowable power dissipation

CX20201A-1/-2/-3	870	mW
CX20202A-1/-2/-3	1430	mW

Recommended Operating Conditions

Supply voltage	AVee, DVee AVee-DVee	$\begin{aligned} & -4.75 \text { to } \\ & -0.05 \text { to } \end{aligned}$	$\begin{aligned} & -5.45 \\ & +0.05 \end{aligned}$
- Digital input voltage	VIH	-1.0 to	-0.7
	VIL	-1.9	-1.6
- Reference input voltage	Vref	$V_{E E}+0.5 t$	$/ E E+1.4$
Load resistance	RL	above 75	
- Output voltage	Vo(fS)	0.8 to	1.2

Pin Description

No.	Symbol	Equivalent circuit	Description
$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	MSB D2 D3 D4 D5 D6 D7 D8 D9 LSB		Input pin for digital data. MSB and LSB are corresponded to the most significant bit and least significant bit, respectively. Pins not used should be left open or connected to DVEE.
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	NC		Non-connection
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \overline{\text { CLK }} \\ & \text { CLK } \end{aligned}$		Pins for clock inputs.
15	DVEE		Power supply pin for digital circuit.
16	INV	(17) (16)	Code invert input pin which inverts the relationship between the binary code of digital data and D/A output voltage level.
17	DGND		Grounding pin for digital circuit.
18	AGND ,		Grounding pin directly connected to the R-2R output resistor circuit network in the IC. Grounding for analog circuit system.
19	NC		Non-connection

No.	Symbol	Equivalent circuit	Description
20	OUT		D/A analog output.
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	NC		Non-connection
26	AVEE;		Power supply pin for analog circuit.
27	Vref		Bias pin which controls D/A output range. The output scale is set by the potential difference between VREF and AVEE.
28	AGND 3		Grounding pin for analog circuit system other than the R-2R output resistor circuit network in the IC

Electrical Characteristics (1) $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{AVEE}=\mathrm{DVEE}=-5.2 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{OV}, \mathrm{RL}=\infty$. VO(FS) $=-1 \mathrm{~V}$

CX20201A-1/CX20202A-1

Item	Symbol	Min.	Typ.	Max.	Unit
Resolution	RES		10		bit
Differential linearity error	ELD	$-1 / 2$		$+1 / 2$	LSB
Linearity error	ELI	-0.1		+0.1	$\%$ of FS
Set1ling time	ts		5.2		ns

$C \times 20201 A-2 / C \times 20202 A-2$

Item	Symbol	Min.	Typ.	Max.	Unit
Resolution	RES		9		bit
Differential linearity error	ELD	$-1 / 2$		$+1 / 2$	LSB
Linearity error	ELI	-0.1		+0.1	$\%$ of FS
Settling time	ts		4.7		ns

CX20201A-3/C $\times 20202 \mathrm{~A}-3$

Item	Symbol	Min.	Typ.	Max.	Unit
Resolution	RES		8		bit
Differential linearity error	ELD	$-1 / 2$		$+1 / 2$	LSB
Linearity error	ELI	-0.2		+0.2	$\%$ of FS
Settling time	ts		4.3		ns

Electrical Characteristics (2) $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{AVEE}=\mathrm{DVEE}=-5.2 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{OV}, \mathrm{RL}=\infty$, $V O(F S)=-1 V$

Item	Symbol	Measuring condition*1	Min.	Typ.	Max.	Unit
Power supply CX20201A	$\mathrm{J}_{\text {EE }}$		-60	-75	-90	mA
current			-65	-82	-100	
Data input current (for upper 4 bits)	$\mathrm{I}_{\mathrm{LH}(\mathrm{U})}$	$\mathrm{V}_{1 H}=-0.89 \mathrm{~V}$	0.1	1.5	6.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL(U) }}$	$\mathrm{V}_{1 \mathrm{~L}}=-1.75 \mathrm{~V}$	0.1	1.5	6.0	$\mu \mathrm{A}$
Data input current (for lower 6 bits)	$\mathrm{I}_{\mathrm{H}(\mathrm{L})}$	$\mathrm{V}_{11}=-0.89 \mathrm{~V}$	0.1	0.75	3.0	$\mu \mathrm{A}$
	$\mathrm{l}_{12(\mathrm{~L})}$	$\mathrm{V}_{\text {IL }}=-1.75 \mathrm{~V}$	0	0.75	3.0	$\mu \mathrm{A}$
Clock input current	$\mathrm{I}_{\text {cLK }}$	$\mathrm{V}_{1 H}=-0.89 \mathrm{~V}$	2	23	70	$\mu \mathrm{A}$
Invert input current	$\mathrm{I}_{\text {tNMH }}$	$V_{1 H}=-0.89 \mathrm{~V}$	0.1	1.5	6.0	$\mu \mathrm{A}$
Reference input current	$\mathrm{I}_{\text {REF }}$	$\mathrm{V}_{\mathrm{REF}}=-4.58 \mathrm{~V}$	-3	-0.4	-0.1	$\mu \mathrm{A}$
Output resistance	R_{0}	$10=-1 \mathrm{~mA}$	52	65	78	Ω
Maximum conversion rate	fc	$\mathrm{R}_{1}=75 \Omega$	160			MSPS
Output voltage full-scale deviation	$\mathrm{V}_{\text {O(FS) }}$	$\mathrm{V}_{\mathrm{REF}}=-4.58 \mathrm{~V}$	0.90	1.00	1.10	V
Set-up time	$\mathrm{t}_{\text {su }}$		5.0			ns
Hold time	$\mathrm{t}_{\text {hd }}$		1.0			ns

*1 See Figs. 3 to 5.

SONY

Data for Typical Application

Item	Symbol	Measuring condition	Typ.	Unit
Output voltage zero offset	EZS	$\mathrm{R}_{\mathrm{L}} \geqq 10 \mathrm{k} \Omega$	-7	mV
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$	-7	
Output voltage full-scale temperature coefficient	$T_{\text {C(FS) }}$	$\mathrm{R}_{\mathrm{L}} \geqq 10 \mathrm{k} \Omega$	-140	ppm/ $/{ }^{\circ} \mathrm{CV}$
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$	-580	
Output voltage zero offset temperature coefficient	$T_{\text {clzs }}$	$\mathrm{R}_{\mathrm{L}} \geqq 10 \mathrm{k} \Omega$	16	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Glitch energy	GE	Digital ramp	15	pVsec
Rise time	t_{r}	$\mathrm{R}_{\mathrm{L}}=75 \Omega$	1.5	ns
Fall time	t_{f}		1.5	ns
Propagation delay	t_{d}		3.8	ns
Band width for multiplying	$\mathrm{BW}_{\text {muL }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=75 \Omega, \\ & -3 \mathrm{~dB} \end{aligned}$	14	MHz

Timing Chart

Fig. 1

Input Coding Table

Input code	Output code (V)	
	INV =	INV $=0$
$000 \cdots .00$	0	-1
\vdots	\vdots	\vdots
$011 \cdots \cdots 11$	-0.5	-0.5
$100 \cdots .00$	\vdots	\vdots
$111 \cdots . .11$	\vdots	\vdots

Measuring Conditions for Current Consumption, Input Current and Output Resistance (See Fig. 2.)

Test item	Symbol	Switch condition																					Test point
		\$1	\$2	\$3	S4	55	56	S7	S8	S9	S10	S11	S12	S13	514	S15	S16	S17	S18	S19	S20	S21	
Current consumption	$\mathrm{I}_{\text {EE }}$	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	a	b	b	b	b	b	11
Data input current for upper 4 bits (H level)	$\mathrm{I}_{\mathrm{H}(\mathrm{U})}$	a	b	b	b	b	b	b	b	b	b	a	b	b	b	b	b	b	b	b	b	b	I 2
		b	a	$\frac{\mathrm{b}}{\mathrm{a}}$	b																		
		b	b	b	a																		
Data input current for lower 4 bits (L level)	$\mathrm{I}_{\text {LL(U) }}$	a	b	b	b	b	b b	b	b	b	b	b	b		b	b	b	b	b	b	b	b	I 2
		b	a	b	b																		
		b	b	a	b																		
		b	b	b	a																		
Data input current for upper 6 bits (H leve)	$\mathrm{I}_{1 \mathrm{H}(\mathrm{L})}$	b	b	b		a	b	b	b	b	b	a	b	b	b	b	b	b	b	b	b	b	12
						b	a	b	b	b	b												
						b	b	a	b	b	b												
						b	b	b	a	b	b												
						b	b	b	b	a	b												
						b	b	b	b	b	a												
Data input current for lower 6 bits (L level)	$\mathrm{I}_{\text {LL(L) }}$	b	b	b b	b	a	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	I 2
						b	a	b	b	b	b												
						b	b	a	b	b	b												
						b	b	b	a	b	b												
						b	b	b	b	a	b												
						b	b	b	b	b	a												
Clock input current (H level)	$\mathrm{I}_{\text {CLKH }}$	b	b	b	b	b	b	b	b	b	b	b	a	b	b	a	b	b	b	b	b	b	I 3
Clock-bar input current (H level)	$I_{\text {clikh }}$	b	b	b	b	b	b	b	b	b	b	b	b	a	a	b	b	b	b	b	b	b	I 4
Invert input current iH levell	$\mathrm{I}_{\text {INVY }}$	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	a	a	b	b	b	15
Referecnce input current	Ifef	-	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	a	16
Output resistance	Ro	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	a	a	b	V1

[^0]Electrical Characteristics Test Circuit
Test Circuit for Current Consumption, Input Current and Output Resistance

Test Circuit for Differential Linearity Error and Linearity Error

- Adjust so that the full scale of DC voltage at P in 20 becomes 1.023 V , that is, to satisfy $\mathrm{Vo}_{0}-V_{1023}=1.023 \mathrm{~V}$ Fig. 3

Linearity errors are measured as follows.

S1	S2	S3	$\cdots \cdots \cdots$	S9	S10	D/A out
0	0	0	$\cdots \cdots \cdots$	0	0	V_{0}
0	0	0	$\cdots \cdots \cdots$	0	1	V_{1}
0	0	0	$\cdots \cdots \cdots$	1	0	V_{2}
1	1	1	$\cdots \cdots \cdots$	1	1	\vdots
			V_{1023}			

Linearity error Differential linearity error

V_{0}	
V_{1}	$V_{1}-V_{8}$
V_{2}	$V_{2}-V_{1}$
V_{4}	$V_{4}-V_{3}$
V_{8}	$V_{8}-V_{7}$
V_{16}	$V_{16}-V_{15}$
V_{32}	$V_{32}-V_{31}$
V_{64}	$V_{64}-V_{63}$
V_{128}	$V_{128}-V_{129}$
V_{192}	$V_{192}-V_{191}$
\vdots	$V_{960}-V_{959}$
V_{960}	
V_{1023}	

Errors at individual measurement points are calculated according to the following definition
$\left(V_{1023}-V_{0}\right) / 1023=V_{0(F S)} / 1023 \equiv 1$ LSB.

Test Circuit for Multiplying Band Width

waveform at point

waveform at point

Notes on Applications

(1) Setting of full-scale output voltage

The full-scale output voltage (Vo(FS)) is set by the pin 27 (VREF). Vo(FS) varies in proportion to the voltage difference between pin 27 and pin 26 (AVEE) as shown in Fig. 9.
Vo(FS) can be set by simply dividing the supply voltage using resistors as shown in Fig. 8, but in this simple set up the voltage deviation of the supply voltage result in a deviation of Vo(fS). This influence can be avoided by using a stabilization circuit as shown in Fig. 7 to allow stable full-scale output.
Pin 27 (VREF) should be stabilized against high-frequency noise by sufficient by passing using a capacitor with low lead inductance such as ceramic chip capacitors. The stabilization capacitor should be inserted between pin 27 (VREF) and pin 26 (AVEE) as Vo(FS) is direct proportion to the voltage across these two terminals.

Fig. 8
(2) Noise reduction

An external digital noise should be minimized because the system handles small analog voltage 11 LSB corresponds 1 mV of analog output voltage for 10 bit resolution). Refer to the following notes to minimize the system noise contamination.

- Ground plane and VEE plane on a printed circuit board should be made as wide as possible to reduce parasitic inductance and resistance.
- The patterns AGND and DGND should be separated on the printed circuit board. AVEE and DVEE should be separated too. The connections between analog system and digital system are to be made at the $1 / O$ ports of the printed circuit board.
- AVEE and DVEE should be bypassed to respective GND by using a tantalum capacitor of $1 \mu \mathrm{~F}$ and a ceramic chip capacitor of $47 \mu \mathrm{~F}$ positioned as close as to terminals of the IC.
- Pins not in sure are to be connected to the ground plane.
(3) Load resistance and temperature coefficient

Temperature coefficient of the full-scale output voltage and zero offset voltage depend on the load resistance (value and type). Generally, the larger the load resistance the better the temperature coefficient value. Temperature characteristics at $\mathrm{RL} \geqq 10 \mathrm{k} \Omega$ and $\mathrm{RL}=75 \Omega$ are shown in Fig. 10.
(4) Input data and internal latching circuit

CX20201A/C $\times 20202$ A incorporates a latching circuit as shown in the block diagram. This latching circuit has a two-stage configuration (master-slave type) and fetches input data only at the rising edge of the clock; the output is not affected by the changes in input data at any other timings. This mechanism allows stable operation against any changes in input data at any timings. except for the set-up time immediately before and the hold time immediately after the clock change from L to H.
(5) Driving input data and clock
$\mathrm{C} \times 20201 \mathrm{~A} / \mathrm{C} \times 20202 \mathrm{~A}$ are designed to be operated at very high speed. It is, therefore, necessary to drive it with a high-speed ICs such as an ECL 100 K for full performance. Also the output port of the data and clock drivers should be terminated with $50-\Omega$ systems. See Figs. 4 and 7.
SONY C×20201A-1/-2/-3.C×20202A-1/-2/-3

Vo(fs) Ratio vs. (VREF-VEE)

Fig. 9
Outbut Characteristics vs.
Multiplying Input Signal Frequency
_ gain (dB)

Fig. 11

Full-scale Output Voltage vs.
Ambient Temperature

Fig. 10

Glitch Energy vs. Case Temperature (Full Scale-1023mV)

Tc-Case Temperature $\left({ }^{\circ} \mathrm{C}\right.$)
Fig. 12

Package Outline Unit: mm

CX20201A
28pin SOP(Plastic) 375 mil 0.69

C×20202A
28pin DIP(Plastic) 600 mil 4.2 g

- 13 -

[^0]: - 7 -

