COP410L/COP411L/COP310L/COP311L Single-Chip N-Channel Microcontrollers

General Description

The COP410L and COP411L Single-Chip N-Channel Microcontrollers are members of the COPSTM family, fabricated using N-channel, silicon gate MOS technology. These Controller Oriented Processors are complete microcomputers containing all system timing, internal logic, ROM, RAM and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and I/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. The COP411L is identical to the COP410L, but with 16 I/O lines instead of 19. They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized Controller Oriented Processor at a low end-product cost.
The COP310L and COP311L are exact functional equivalents but extended temperature versions of COP410L and COP411L respectively.
The COP401L should be used for exact emulation.

Features

- Low cost
- Powerful instruction set
- 512×8 ROM, 32×4 RAM
- 19 I/O lines (COP410L)
- Two-level subroutine stack
- $16 \mu \mathrm{~s}$ instruction time
- Single supply operation (4.5V-6.3V)
- Low current drain (6 mA max)
- Internal binary counter register with MICROWIRETM serial I/O capability
- General purpose and TRI-STATE* outputs
- LSTTL/CMOS compatible in and out
- Direct drive of LED digit and segment lines
- Software/hardware compatible with other members of COP400 family
- Extended temperature range device
- COP310L/COP311L ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Block Diagram

COP410L/COP411L

DC Electrical Characteristics $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.3 \mathrm{~V}$ unless otherwise noted

Parameter	Conditions	Min	Max	Units
Standard Operating Voltage (V_{CC}) Power Supply Ripple Operating Supply Current	(Note 1) Peak to Peak All Inputs and Outputs Open	4.5	$\begin{gathered} 6.3 \\ 0.5 \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
Input Voltage Levels CKI Input Levels Ceramic Resonator Input ($\div 8$) Logic High (V_{IH}) Logic High ($\mathrm{V}_{\mathbb{1}}$) Logic Low ($V_{1 L}$) Schmitt Trigger Input ($\div 4$) Logic High ($\mathrm{V}_{1 \mathrm{H}}$) Logic Low (V) RESET Input Levels Logic High Logic Low SO Input Level (Test Mode) All Other Inputs Logic High Logic High Logic Low Logic High Logic Low Input Capacitance Hi-Z Input Leakage	$\begin{aligned} & V_{C C}=M a x \\ & V_{C C}=5 V \pm 5 \% \end{aligned}$ (Schmitt Trigger Input) (Note 2) $V_{C C}=M a x$ With TTL Trip Level Options Selected, VCC $=5 \mathrm{~V} \pm 5 \%$ With High Trip Level Options Selected	3.0 2.0 -0.3 $0.7 V_{C C}$ -0.3 $0.7 V_{C C}$ -0.3 2.0 3.0 2.0 -0.3 3.6 -0.3 -1	0.4 0.6 0.6 2.5 0.8 1.2 7 $+1$	V V V pF $\mu \mathrm{A}$
Output Voltage Levels LSTTL Operation Logic High (V_{OH}) Logic Low (VOU	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{I}_{\mathrm{OH}}=-25 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=0.36 \mathrm{~mA} \end{aligned}$	2.7	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMOS Operation (Note 3) Logic High Logic Low	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$V_{c c}-1$	0.2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \hline \end{aligned}$

Note 1: $V_{C C}$ voltage change must be less than 0.5 V in a 1 ms period to maintain proper operation.
Note 2: SO output " 0 " level must be less than 0.8 V for normal operation.
Note 3: TRI-STATE® and LED configurations are excluded.

COP410L/COP411L
DC Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.3 \mathrm{~V}$ unless otherwise noted (Continued)

Output Current Levels Output Sink Current SO and SK Outputs (lou)
$L_{0}-L_{7}$ Outputs, $G_{0}-G_{3}$ and LSTTL $D_{0}-D_{3}$ Outputs (loL) $D_{0}-D_{3}$ Outputs with High Current Options (loL) $\mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs with Very High Current Options (lou) CKI (Single-Pin RC Oscillator) CKO

Output Source Current Standard Configuration, All Outputs (IOH) Push-Pull Configuration SO and SK Outputs ($\mathrm{IOH}_{\mathrm{H}}$) LED Configuration, $L_{0}-L_{7}$ Outputs, Low Current Driver Option (IOH) LED Configuration, $\mathrm{L}_{0}-\mathrm{L}_{7}$ Outputs, High Current Driver Option (loH) TRI-STATE Configuration, $\mathrm{L}_{0}-\mathrm{L}_{7}$ Outputs, Low Current Driver Option ($\mathrm{lOH}_{\text {) }}$ TRI-STATE Configuration, $L_{0}-L_{7}$ Outputs, High Current Driver Option (loh) Input Load Source Current | CKO Output |
| :--- |
| RAM Power Supply Option |
| Power Requirement |

TRI-STATE Output Leakage Current		-2.5	+2.5	$\mu \mathrm{~A}$
Total Sink Current Allowed				
All Outputs Combined			100	mA
D Port			100	mA
L7-L4, G Port			4	mA
L3-L0			mA	
Any Other Pin			mA	
Total Source Current Allowed			120	mA
All IOCombined			60	mA
L7-L4			25	mA
L3-L0			mA	
Each L Pin				
Any Other Pin				

COP310L/COP311L

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Voltage at Any Pin Relative to GND
Ambient Operating Temperature

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

(Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Power Dissipation
COP310L
0.75 W at $25^{\circ} \mathrm{C}$
0.25 W at $85^{\circ} \mathrm{C}$

COP311L

Total Source Current 0.65 W at $25^{\circ} \mathrm{C}$ 0.20 W at $85^{\circ} \mathrm{C}$

Total Sink Current

120 mA
100 mA
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absoluto maximum ratings.

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}$ CC $\leq 5.5 \mathrm{~V}$ unless otherwise noted

Parameter	Conditions	Min	Max	Units
Standard Operating Voltage ($V_{C C}$) Power Supply Ripple Operating Supply Current	(Note 1) Peak to Peak All Inputs and Outputs Open	4.5	$\begin{gathered} 5.5 \\ 0.5 \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
Input Voltage Levels Ceramic Resonator Input ($\div 8$) Crystal Input Logic High ($\mathrm{V}_{1 \mathrm{H}}$) Logic High (V_{IH}) Logic Low (VIL) Schmitt Trigger Input ($\div 4$) Logic High ($\mathrm{V}_{1 \mathrm{H}}$) Logic Low (VIL) RESET Input Levels Logic High Logic Low SO Input Level (Test Mode) All Other Inputs Logic High Logic High Logic Low Logic High Logic Low Input Capacitance Hi-Z Input Leakage	$\begin{aligned} & V_{C C}=M a x \\ & V_{C C}=5 V \pm 5 \% \end{aligned}$ (Schmitt Trigger Input) (Note 2) $V_{C C}=M a x$ With TTL Trip Level Options Selected, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ With High Trip Level Options Selected	$\begin{gathered} 3.0 \\ 2.2 \\ -0.3 \\ \\ 0.7 V_{\mathrm{CC}} \\ -0.3 \\ \\ 0.7 V_{\mathrm{CC}} \\ -0.3 \\ 2.2 \\ \\ 3.0 \\ 2.2 \\ -0.3 \\ 3.6 \\ -0.3 \\ \\ -2 \end{gathered}$	0.3 0.4 0.4 2.5 0.6 1.2 7 $+2$	v v v V pF $\mu \mathrm{A}$
Output Voltage Levels LSTTL Operation Logic High (VOH) Logic Low (VOU)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=0.36 \mathrm{~mA} \end{aligned}$	2.7	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMOS Operation (Note 3) Logic High Logic Low	$\begin{aligned} & I_{O H}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$V_{c c}-1$	0.2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Note 1: VCC voltage change must be less than 0.5 V in a 1 ms period to maintain proper operation.
Note 2: SO output " 0 " level must be less than 0.6 V for normal operation.
Note 3: TRI-STATE and LED configurations are excluded.

AC Electrical Characteristics

COP410L/411L: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.3 \mathrm{~V}$ unless otherwise noted COP310L/311L: $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ unless otherwise noted

Parameter	Conditions	Min	Max	Units
Instruction Cycle Time - t_{C} CKI		16	40	$\mu \mathrm{s}$
Input Frequency - f_{1}	$\begin{aligned} & \div 8 \text { Mode } \\ & \div 4 \text { Mode } \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.25 \end{gathered}$	MHz MHz
Duty Cycle		30	60	\%
Rise Time	$\mathrm{I}_{1}=0.5 \mathrm{MHz}$		500	ns
Fall Time			200	ns
CKI Using RC $(\div 4)$ (Note 1)	$\begin{aligned} & R=56 \mathrm{k} \Omega \pm 5 \% \\ & C=100 \mathrm{pF} \pm 10 \% \end{aligned}$			
Instruction Cycle Time		16	28	$\mu \mathrm{s}$
CKO as SYNC Input ISYNC		400		
INPUTS				
$\begin{aligned} & \mathrm{G}_{3}-\mathrm{G}_{0,} \mathrm{~L}_{7}-\mathrm{L}_{0} \\ & \text { t}_{\text {SETUP }} \\ & \text { t}_{\text {HOLD }} \end{aligned}$		$\begin{aligned} & 8.0 \\ & 1.3 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
SI				
tsetup thold		$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$
OUTPUT PROPAGATION DELAY	Test Condition: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}$			
SO, SK Outputs $t_{\text {pd }}, t_{\text {pd }}$			4.0	$\mu \mathrm{s}$
All Other Outputs $t_{p d 1}, t_{\text {pdo }}$			5.6	$\mu \mathrm{s}$

Note 1: Variation due to the device included.

Connection Diagrams

SO Wide and DIP

Top Vlew
Order Number COP310L-XXX/D or COP410L-XXX/D See NS Hermetic Package Number D24C
Order Number COP310L-XXX/N or COP410L-XXX/N See NS Molded Package Number N24A

Top Vlew
Order Number COP311L-XXX/D or COP411L-XXX/D See NS Hermetic Package Number D24C
Order Number COP311L-XXX/N or COP411L-XXX/N See NS Molded Package Number N20A
FIGURE 2

Pin	Description	Pin	Description
L_{7-1}	8 bidirectional I/O ports with TRI-STATE	CKI	System oscillator input
$\mathrm{G}_{3}-\mathrm{G}_{0}$	4 bidirectional I/O ports ($\mathrm{G}_{2}-\mathrm{G}_{0}$ for COP411L)	CKO	System oscillator output (or RAM power supply or
$D_{3}-D_{0}$	4 general purpose outputs ($\mathrm{D}_{1}-\mathrm{D}_{0}$ for COP411L)		SYNC input) (COP410L only)
SI	Serial input (or counter input)	RESET	System reset input
SO	Serial output (or general purpose output)	VCC	Power supply
SK	Logic-controlled clock (or general purpose output)	GND	Ground

Pin Descriptions

Timing Diagrams

TL/DD/6919-4
FIGURE 3. Input/Output Timing Diagrams (Ceramic Resonator Divide-by-8 Mode)

TLDD/6918-5
FIGURE 3a. Synchronization TIming

Functional Description

A block diagram of the COP410L is given in Figure 1. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 " (greater than 2 V). When a bit is reset, it is a logic " 0 " (less than 0.8 V).
All functional references to the COP410L/COP411L also apply to the COP310L/COP311L.

PROGRAM MEMORY

Program Memory consists of a 512-byte ROM. As can be seen by an examination of the COP410L/411L instruction set, these words may be program instructions, program data or ROM addressing data. Because of the special characteristics associated with the JP, JSRP, JID and LQID instructions, ROM must often be thought of as being organized into 8 pages of 64 words each.
ROM addressing is accomplished by a 9-bit PC register. Its binary value selects one of the 5128 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 9 -bit binary count value. Two levels of subroutine nesting are implemented by the 9 -bit subroutine save registers, SA and SB, providing a last-in, first-out (LIFO) hardware subroutine stack.
ROM instruction words are fetched, decoded and executed by the Instruction Decode, Control and Skip Logic circuitry.

DATA MEMORY

Data memory consists of a 128-bit RAM, organized as 4 data registers of 84 -bit digits. RAM addressing is implemented by a 6-bit B register whose upper 2 bits (Br) select 1 of 4 data registers and lower 3 bits of the 4 -bit Bd select 1 of 84 -bit digits in the selected data register. While the 4 -bit contents of the selected RAM digit (M) is usually loaded into or from, or exchanged with, the A register (accumulator), it
may also be loaded into the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the XAD 3,15 instruction. The Bd register also serves as a source register for 4 -bit data sent directly to the D outputs. The most significant bit of Bd is not used to select a RAM digit. Hence each physical digit of RAM may be selected by two different values of Bd as shown in Figure 4 below. The skip condition for XIS and XDS instructions will be true if Bd changes between 0 and 15, but NOT between 7 and 8 (see Table III).

TL/DD/6919-6
FIGURE 4. RAM Digit Address to Physical RAM Diglt Mapping

Functional Description (Continued)

INTERNAL LOGIC

The 4-bit A register (accumulator) is the source and destination register for most I/O, arithmetic, logic and data memory access operations. It can also be used to load the Bd portion of the B register, to load 4 bits of the 8 -bit Q latch data, to input 4 bits of the 8 -bit L I/O port data and to perform data exchanges with the SIO register.
A 4-bit adder performs the arithmetic and logic functions of the COP410L/411L, storing its results in A. It also outputs a carry bit to the 1-bit C register, most often employed to indicate arithmetic overflow. The C register, in conjunction with the XAS instruction and the EN register, also serves to control the SK output. C can be outputted directly to SK or can enable SK to be a sync clock each instruction cycle time. (See XAS instruction and EN register description, below.)
The G register contents are outputs to 4 general-purpose bidirectional I/O ports.
The Q register is an internal, latched, 8 -bit register, used to hold data loaded from M and A, as well as 8 -bit data from ROM. Its contents are output to the LI/O ports when the L drivers are enabled under program control. (See LEI instruction.)
The 8 L drivers, when enabled, output the contents of latched Q data to the LI/O ports. Also, the contents of L may be read directly into A and $M . L I / O$ ports can be directly connected to the segments of a multiplexed LED display (using the LED Direct Drive output configuration option) with Q data being outputted to the $\mathrm{Sa}-\mathrm{Sg}$ and decimal point segments of the display.
The SIO register functions as a 4-bit serial-in serial-out shift register or as a binary counter depending on the contents of the EN register. (See EN register description, below.) Its contents can be exchanged with A, allowing it to input or output a continuous serial data stream. SIO may also be used to provide additional parallel I/O by connecting SO to external serial-in/parallel-out shift registers.
The XAS instruction copies C into the SKL Latch. In the counter mode, SK is the output of SKL in the shift register mode, SK outputs SKL ANDed with internal instruction cycle clock.

The EN register is an internal 4-bit register loaded under program control by the LEl instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register ($\mathrm{EN}_{3}-\mathrm{EN}_{0}$).

1. The least significant bit of the enable register, $E N_{0}, s e-$ lects the SIO register as either a 4-bit shift register or a 4-bit binary counter. With $E N_{0}$ set, SIO is an asynchronous binary counter, decrementing its value by one upon
each low-going pulse (" 1 " to " 0 ") occurring on the SI input. Each pulse must be at least two instruction cycles wide. SK outputs the value of SKL. The SO output is equal to the value of $E N_{3}$. With $E N_{0}$ reset, SIO is a serial shift register shifting left each instruction cycle time. The data present at SI goes into the least significant bit of SIO. SO can be enabled to output the most significant bit of SIO each cycle time. (See 4 below.) The SK output becomes a logic-controlled clock.
2. $E N_{1}$ is not used. It has no effect on COP410L/COP411L operation.
3. With $E N_{2}$ set, the L drivers are enabled to output the data in Q to the L I/O ports. Resetting EN_{2} disables the L drivers, placing the LI/O ports in a high-impedance input state.
4. $E N_{3}$, in conjunction with $E N_{0}$, affects the SO output. With $E N_{0}$ set (binary counter option selected) SO will output the value loaded into $E N_{3}$. With $E N_{0}$ reset (serial shift register option selected), setting EN_{3} enables SO as the output of the SIO shift register, outputting serial shifted data each instruction time. Resetting EN_{3} with the serial shift register option selected disables SO as the shift register output; data continues to be shifted through SIO and can be exchanged with A via an XAS instruction but SO remains reset to " 0 ." Table I provides a summary of the modes associated with EN_{3} and EN_{0}.

INITIALIZATION

The Reset Logic will initialize (clear) the device upon powerup if the power supply rise time is less than 1 ms and greater than $1 \mu \mathrm{~s}$. If the power supply rise time is greater than 1 ms , the user must provide an external RC network and diode to the $\overline{\text { RESET }}$ pin as shown below (Figure 5). The RESET pin is configured as a Schmitt trigger input. If not used it should be connected to $V_{C c}$. Initialization will occur whenever a logic " 0 " is applied to the RESET input, provided it stays low for at least three instruction cycle times.

RC $\geq 5 \times$ Power Supply Rise Time TL/DD/6918-7
FIGURE 5. Power-Up Clear CIrcult

EN_{3}	EN0	SIO	SI	SO	SK
0	0	Shift Register	Input to Shift Register	0	$\begin{aligned} & \text { If } S K L=1, S K=\text { Clock } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	0	Shift Register	Input to Shift Register	Serial Out	$\begin{aligned} & \text { If } S K L=1, S K=\text { Clock } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
0	1	Binary Counter	Input to Binary Counter	0	$\begin{aligned} & \text { If } S K L=1, S K=1 \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	1	Binary Counter	Input to Binary Counter	1	$\begin{aligned} & \text { If } S K L=1, S K=1 \\ & \text { If } S K L=0, S K=0 \end{aligned}$

Functional Description (Continued)

Upon initialization, the PC register is cleared to 0 (ROM address 0) and the $A, B, C, D, E N$, and G registers are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA.

TL/DD/6919-8
Ceramic Resonator Oscillator

Resonator Value	Components Values			
	R1 (Ω)	R2 ($\Omega)$	C1 (pF)	C2 (pF)
455 kHz	4.7 k	1 M	220	220

RC Controlled Oscillator

$R(k \Omega)$	$C(p F)$	Instruction Cycle Time in $\mu \mathbf{s}$
51	100	$19 \pm 15 \%$
82	56	$19 \pm 13 \%$

Note: $200 \mathrm{k} \Omega \geq R \geq \mathbf{2 5} \mathbf{k} \Omega .360 \mathrm{pF} \geq \mathrm{C} \geq 50 \mathrm{pF}$. Does not include tolerances.
FIGURE 6. COP410L/411L Oscillator

OSCILLATOR

There are three basic clock oscillator configurations available as shown by Figure 6.
a. Resonator Controlled Oscillator. CKI and CKO are connected to an external ceramic resonator. The instruction cycle frequency equals the resonator frequency divided by 8 . This is not available in the COP411L.
b. External Oscillator. CKI is an external clock input signal. The external frequency is divided by 4 to give the instruction frequency time. CKO is now available to be used as the RAM power supply $\left(V_{R}\right)$, or no connection.
Note: No CKO on COP411L
c. RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is available as the RAM power supply (V_{R}) or no connection.

CKO PIN OPTIONS

In a resonator controlled oscillator system, CKO is used as an output to the resonator network. As an option, CKO can be a RAM power supply pin (V_{P}), allowing its connection to a standby/backup power supply to maintain the integrity of RAM data with minimum power drain when the main supply is inoperative or shut down to conserve power. Using no connection option is appropriate in applications where the COP410L system timing configuration does not require use of the CKO pin.

RAM KEEP-ALIVE OPTION

Selecting CKO as the RAM power supply (V_{R}) allows the user to shut off the chip power supply (V_{CC}) and maintain data in the RAM. To insure that RAM data integrity is maintained, the following conditions must be met:

1. RESET must go low before $V_{C C}$ goes below spec during power-off; $V_{\text {CC }}$ must be within spec before RESET goes high on power-up.
2. During normal operation, V_{R} must be within the operating range of the chip with $\left(\mathrm{V}_{C C}-1\right) \leq \mathrm{V}_{\mathrm{R}} \leq \mathrm{V}_{\mathrm{CC}}$.
3. V_{R} must be $\geq 3.3 \mathrm{~V}$ with $V_{C C}$ off.

I/O OPTIONS

COP410L/411L inputs and outputs have the following optional configurations, illustrated in Figure 7 :
a. Standard-an enhancement-mode device to ground in conjunction with a depletion-mode device to VCC, compatible with LSTTL and CMOS input requirements. Available on SO, SK, and all D and G outputs.
b. Open-Draln-an enhancement-mode device to ground only, allowing external pull-up as required by the user's application. Available on SO, SK, and all D and G outputs.
c. Push-Pull-an enhancement-mode device to ground in conjunction with a depletion-mode device paralleled by an enhancement-mode device to V_{CC}. This configuration has been provided to allow for fast rise and fall times when driving capacitive loads. Available on SO and SK outputs only.
d. Standard L—same as a., but may be disabled. Available on L outputs only.
e. Open Drain L-same as b., but may be disabled. Available on L outputs only.
f. LED Direct Drive-an enhancement mode device to ground and to $V_{C C}$, meeting the typical current sourcing requirements of the segments of an LED display. The sourcing device is clamped to limit current flow. These devices may be turned off under program control (see Functional Description, EN Register), placing the outputs in a high-impedance state to provide required LED segment blanking for a multiplexed display. Available on L outputs only.
Note: Series current limiting resistors must be used if LEDs are driven directly and higher operating voltage option is selected.
g. TRI-STATE Push-Pull-an enhancement-mode device to ground and VCC. These outputs are TRI-STATE outputs, allowing for connection of these outputs to a data bus shared by other bus drivers. Available on L outputs only.

Functional Description (Continued)

h. An on-chip depletion load device to $V_{C C}$.
I. A Hi-Z input which must be driven to a " 1 " or " 0 " by external components.
The above input and output configurations share common enhancement-mode and depletion-mode devices. Specifically, all configurations use one or more of six devices (numbered 1-6, respectively). Minimum and maximum current (IOUT and VOUT) curves are given in Figure 8 for each of these devices to allow the designer to effectively use these I/O configurations in designing a COP410L/411L system.
The SO, SK outputs can be configured as shown in a., b., or c. The D and G outputs can be configured as shown in a. or b. Note that when inputting data to the G ports, the G outputs should be set to " 1 ". The L outputs can be configured as in d., e., f., or g.

An important point to remember if using configuration d. or f. with the L drivers is that even when the L drivers are disabled, the depletion load device will source a small amount of current. (See Figure 8, device 2.) However, when the L port is used as input, the disabled depletion device CANNOT be relied on to source sufficient current to pull an input to a logic " 1 ".

COP411L

If the COP410L is bonded as a 20 -pin device, it becomes the COP411L, illustrated in Figure 2, COP410L/411L Connection Diagrams. Note that the COP411L does not contain D2, D3, G3, or CKO. Use of this option of course precludes use of D2, D3, G3, and CKO options. All other options are available for the COP411L.

b. Open-Drain Output

TL/DD/6919-10
c. Push-Pull Output

d. Standard L Output

g. TRI-STATE Push-Pull (L Output)
e. Open-Drain L Output
 DISABLE

Open-Drain L Output
h. Input with Load

TL/DD/6919-15

I. HI-Z Input

TL/DD/6919-17

FIGURE 7. Input and Output Configurations

Typical Performance Characteristics

FIGURE 8a. COP410L/COP411L I/O DC Current Characteristics

Typical Performance Characteristics (Continued)

FIGURE 8a. COP410L/COP411L I/O DC Current Characterlstics (Continued)

Typical Performance Characteristics (Continued)

FIGURE 8b. COP310L/COP311L Input/Output Characteristics

Typical Performance Characteristics

Source Current for SO and SK In Push－Pull Configuration

Source Current for L_{0} through L_{7} In TRI－STATE Configura－ tion（High Current Option）

Typical Performance Characteristics (Continued)

FIGURE 8a. COP410L/COP411L Input/Output Characteristics

Typical Performance Characteristics (Continued)

FIGURE 8b. COP310L/COP311L Input/Output Characteristics

COP410L/411L Instruction Set

Table II is a symbol table providing internal architecture, instruction operand and operational symbols used in the instruction set table.

Table III provides the mnemonic, operand, machine code, data flow, skip conditions and description associated with each instruction in the COP410L/411L instruction set.

TABLE II. COP410L/411L Instruction Set Table Symbols

Symbol	Definition	Symbol	Definition
INTERNAL ARCHITECTURE SYMBOLS		INSTRUCTION OPERAND SYMBOLS	
A	4-bit Accumulator	d	4-bit Operand Field, 0-15 binary (RAM Digit Select)
B	6-bit RAM Address Register	r er	2-bit Operand Field, 0-3 binary (RAM Register
Br	Upper 2 blts of B (register address)		Select)
Bd	Lower 4 bits of B (digit address)		9-bit Operand Field, 0-511 binary (ROM Address)
C	1-bit Carry Register		4-bit Operand Field, 0-15 binary (Immediate Data)
D	4-bit Data Output Port	RAM(s)	Contents of RAM location addressed by s
EN	4-bit Enable Register	ROM(t)	Contents of ROM location addressed by t
G	4-bit Register to latch data for G I/O Port		
L	8-bit TRI-STATE I/O Port	OPERATIONAL SYMBOLS	
M			
	Register	+	Plus
PC	9-bit ROM Address Register (program counter)	-	Minus
Q	8 -bit Register to latch data for L I/O Port	\rightarrow	Replaces
SA	9-bit Subroutine Save Register A	\longleftrightarrow	Is exchanged with
SB	9 9-bit Subroutine Save Register B	$=$	Is equal to
SIO	4-bit Shift Register and Counter	\bar{A}	The one's complement of A
SK	Logic-Controlled Clock Output	\oplus	Exclusive-OR
		:	Range of values

TABLE III. COP410L/411L Instruction Set

Mnemonic	Operand	$\begin{aligned} & \text { Hex } \\ & \text { Code } \end{aligned}$	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description
ARITHMETIC INSTRUCTIONS						
ASC		30	001110000	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with Carry, Skip on Carry
ADD		31	0011 0001	$A+R A M(B) \rightarrow A$	None	Add RAM to A
AISC	y	5-	0101 y ${ }^{\text {y }}$	$A+y \rightarrow A$	Carry	Add Immediate, Skip on Carry ($y \neq 0$)
CLRA		00	1000010000	$0 \rightarrow A$	None	Clear A
COMP		40	1010010000	$\overline{\mathbf{A}} \rightarrow \mathrm{A}$	None	One's complement of A to A
NOP		44	1010010100)	None	None	No Operation
RC		32	[001110010]	" 0 " \rightarrow C	None	Reset C
SC		22	0010/0010	"1" \rightarrow C	None	Set C
XOR		02	1000010010	$A \oplus R A M(B) \rightarrow A$	None	Exclusive-OR RAM with A

Instruction Set (Continued)					,			
TABLE III. COP410L/411L Instructlon Set (Continued)								
Mnemonic	Operand	Hex Code	Machine Language Code (BInary)	Data Flow	Sklp Conditions	Description		
TRANSFER OF CONTROL INSTRUCTIONS								
JID		FF	\|111	1111	$\begin{aligned} & \mathrm{ROM}\left(\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M}\right) \rightarrow \\ & \mathrm{PC}_{7: 0} \end{aligned}$	None	Jump Indirect (Note 2)	
JMP	a	$6-$	$\frac{0110\|000\| a_{8} \mid}{a_{7}: 0}$	$a \rightarrow P C$	None	Jump		
JP	a			$\begin{aligned} & a \rightarrow P C_{6: 0} \\ & a \rightarrow P C_{5: 0} \end{aligned}$	None	Jump within Page (Note 3)		
JSRP	a	- -	\|10	$\mathbf{a s : 0}^{\text {a }}$	$\begin{aligned} & P C+1 \rightarrow S A \rightarrow S B \\ & 010 \rightarrow P C_{8: 6} \\ & a \rightarrow P C_{5: 0} \end{aligned}$	None	Jump to Subroutine Page (Note 4)	
JSR	a	6-		$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \\ & \mathrm{a} \rightarrow \mathrm{PC} \end{aligned}$	None	Jump to Subroutine		
RET		48	10100\|1000	SB \rightarrow SA \rightarrow PC	None	Return from Subroutine		
RETSK		49	0100 1001	$\mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	Always Skip on Return	Return from Subroutine then Skip		
MEMORY REFERENCE INSTRUCTIONS								
CAMQ		$\begin{aligned} & 33 \\ & 3 C \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0011 & 0011 \\ \hline 0011 & 1100 \\ \hline \end{array}$	$\begin{aligned} & A \rightarrow Q_{7: 4} \\ & R A M(B) \xrightarrow{\rightarrow} Q_{3: 0} \end{aligned}$	None	Copy A, RAM to Q		
LD	r	-5	L00\|r	0101		$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \rightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Load RAM into A, Exclusive-OR Br with r
LQID		BF	\|1011 1111	$\begin{aligned} & \mathrm{ROM}\left(\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M}\right) \rightarrow \mathrm{Q} \\ & \mathrm{SA} \rightarrow \mathrm{SB} \end{aligned}$	None	Load Q Indirect (Note 2)		
RMB	0 1 2 3	$4 C$ 45 42 43	0100 1100 0100 0101 0100 0010 0100 0011	$\begin{aligned} & 0 \rightarrow R A M(B)_{0} \\ & 0 \rightarrow R A M(B)_{1} \\ & 0 \rightarrow R A M(B)_{2} \\ & 0 \rightarrow R A M(B)_{3} \end{aligned}$	None	Reset RAM Bit		
SMB	0 1 2 3	$4 D$ 47 46 $4 B$	0100 1101 0100 0111 0100 0110 0100 1011	$\begin{aligned} 1 & \rightarrow \text { RAM }(B)_{0} \\ 1 & \rightarrow \text { RAM }(B)_{1} \\ 1 & \rightarrow \text { RAM }(B)_{2} \\ 1 & \rightarrow \text { RAM }(B)_{3} \end{aligned}$	None	Set RAM Bit		
STII	y	$7-$	10111 y y	$\begin{aligned} & y \rightarrow R A M(B) \\ & B d+1 \rightarrow B d \end{aligned}$	None	Store Memory Immediate and Increment Bd		
x	r	-6	100\|r/0110	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \\ & \mathrm{Br} \oplus \mathrm{r} \longrightarrow \mathrm{Br} \end{aligned}$	None	Exchange RAM with A, Exclusive-OR Br with r		
XAD	3,15	$\begin{aligned} & 23 \\ & B F \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline 0010 & 0011 \mid \\ \hline 1011 & 11111 \\ \hline \end{array}$	RAM $(3,15) \longleftrightarrow A$	None	Exchange A with RAM $(3,15)$		
XDS	r	-7	100\|r	0111	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \longleftrightarrow \mathrm{A} \\ & \mathrm{Bd}-1 \rightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \longrightarrow \mathrm{Br} \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd, Exclusive-OR Br with r	
XIS	r	-4	100\|r	0100	$\begin{aligned} & \text { RAM }(\mathrm{B}) \longleftrightarrow \mathrm{A} \\ & \mathrm{Bd}+1 \longrightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \longrightarrow \mathrm{Br} \end{aligned}$	Bdincrements past 15	Exchange RAM with A and Increment Bd Exclusive-OR Br with r	

TABLE III. COP410L/411L Instruction Set (Continued)							
Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Sklp Conditions	Description	
REGISTER REFERENCE INSTRUCTIONS							
CAB		50	0101 00001	A \rightarrow Bd	None	Copy A to Bd	
CBA		4E	10100\|1110		$\mathrm{Bd} \rightarrow \mathrm{A}$	None	Copy Bd to A
LBI	r,d	- -	$\begin{aligned} & 100\|r\|(d-1) \mid \\ & (d=0,9: 15) \end{aligned}$	$r, d \rightarrow B$	Skip until not a LBI	Load B Immediate with r,d (Note 5)	
LEI	y	$\begin{aligned} & 33 \\ & 6- \end{aligned}$	$0011\|0011\|$ 0110	$y \rightarrow E N$	None	Load EN Immediate (Note 6)	
TEST INSTRUCTIONS							
SKC		20	10010\|0000		$C=" 1 "$	Skip if C is True	
SKE		21	0010/0001		$A=R A M(B)$	Skip if A Equals RAM	
SKGZ		33	10011\|0011		$\mathrm{G}_{3: 0}=0$	Skip if G is Zero	
		21	0010/0001			(all 4 bits)	
SKGBZ		33	$\underline{001110011}$	1st byte		Skip if G Bit is Zero	
	0	01	000010001		$\mathrm{G}_{0}=0$		
	1	11	0001\|0001	2nd byte	$\mathrm{G}_{1}=0$		
	2	03	[0000\|0011	2nd byto	$\mathrm{G}_{2}=0$ $\mathrm{G}_{3}=0$		
	3	13	00010011		$\mathrm{G}_{3}=0$		
SKMBZ	0	01	10000\|0001		RAM $(B)_{0}=0$	Skip if RAM Bit is Zero	
	1	11	00010001		$\operatorname{RAM}(\mathrm{B})_{1}=0$		
	2	03	0000\|0011		$\operatorname{RAM}(\mathrm{B})_{2}=0$		
	3	13	0001 0011		$\mathrm{RAM}(\mathrm{B})_{3}=0$		
INPUT/OUTPUTINSTRUCTIONS							
ING		33	0011 00011	$\mathrm{G} \rightarrow \mathrm{A}$	None	Input G Ports to A	
		2A	O010 1010				
INL		33	0011 00011		None	Input L Ports to RAM, A	
		2 E	001011110	$L_{3: 0} \rightarrow A$			
OBD		33	1001110011	$\mathrm{Bd} \rightarrow \mathrm{D}$	None	Output Bd to D Outputs	
		3E	0011\|1110				
OMG		33	\|0011	0011	RAM(B) \rightarrow G	None	Output RAM to G Ports
		3A	0011\|1010				
XAS		4F	10100\|1111	A	None	Exchange A with SIO (Note 2)	
Note 1: All subscripts for alphabetcal symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least significant bit (low-order, right-most bit). For example, A_{3} indicates the most significant (left-most) bit of the 4-bit A register.							
Note 2: For additional information on the operation of the XAS, JID, and LQID instruetions, see below. Note 3: The JP instruction allows a jump, while in subroutine pages 2 or 3 , to any ROM location within the two-page boundary of pages $\mathbf{2}$ or $\mathbf{3}$. The JP instruction, othenwise, permits a Jump to a ROM location within the current 84 -word page. JP may not Jump to the last word of a page.							
Note 4: A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3 . JSRP may not jump to the last word in page 2.							
Note 5: The machine code for the lower 4 bits of the LBI instruction equals the binary value of the "d" data minus 1, e.g., to load the lower four bits of 8 (Bd) with the value θ ($\mathbf{1 0 0 1}_{2}$), the lower 4 bits of the LBI instruction equal $8(10002)$. To load 0 , the lower 4 bits of the LBI instruction should equal 15 (1111_{2}).							
Note 6: Machine code for operand field y for LEI instruction should equal the binary value to be latched into EN, where a " 1 " or " 0 " in each bit of EN corresponds with the selection or deselection of a particular function associated with each bit. (See Functional Description, EN Register.)							

Description of Selected Instructions

The following information is provided to assist the user in understanding the operation of several unique instructions and to provide notes useful to programmers in writing COP410L/411L programs.

XAS INSTRUCTION

XAS (Exchange A with SIO) exchanges the 4-bit contents of the accumulator with the 4-bit contents of the SIO register. The contents of SIO will contain serial-in/serial-out shift register or binary counter data, depending on the value of the EN register. An XAS instruction will also affect the SK output. (See Functional Description, EN Register, above.) If SIO is selected as a shift register, an XAS instruction must be performed once every 4 instruction cycles to effect a continuous data stream.

JID INSTRUCTION

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 9 -bit word, $\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M} . \mathrm{PC}_{8}$ is not affected by this instruction.
Note that JID requires 2 instruction cycles to execute.

LQID INSTRUCTION

LQID (Load Q Indirect) loads the 8-bit Q register with the contents of ROM pointed to by the 9-bit word $\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M}$. LQID can be used for table lookup or code conversion such as BCD to seven-segment. The LQID instruction "pushes" the stack ($\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB}$) and replaces the least significant 8 bits of PC as follows: $A \rightarrow$ PC $_{7: 4}$, RAM (B) $\rightarrow \mathrm{PC}_{3: 0}$, leaving PC_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" (SB \rightarrow SA \rightarrow PC), restoring the saved value of PC to continue sequential program execution. Since LQID pushes SA \rightarrow SB, the previous contents of SB are lost. Also, when LQID pops the stack, the previously pushed contents of SA are left in SB. The net result is that the contents of SA are placed in SB (SA \rightarrow SB). Note that LQID takes two instruction cycle times to execute.

INSTRUCTION SET NOTES

a. The first word of a COP410L/411L program (ROM address 0) must be a CLRA (Clear A) instruction.
b. Although skipped instructions are not executed, one instruction cycle time is devoted to skipping each byte of the skipped instruction. Thus all program paths except JID and LQID take the same number of cycle times whether instructions are skipped or executed. JID and LQID instructions take 2 cycles if executed and 1 cycle if skipped.
c. The ROM is organized into 8 pages of 64 words each. The Program Counter is a 9 -bit binary counter, and will count through page boundaries. If a JP, JSRP, JID or LQID instruction is located in the last word of a page, the instruction operates as if it were in the next page. For example: a JP located in the last word of a page will jump to a location in the next page. Also, a LQID or JID located in the last word of page 3 or 7 will access data in the next group of 4 pages.

Option List

The COP410L/411L mask-programmable options are assigned numbers which correspond with the COP410L pins.
The following is a list of COP410L options. The LED Direct Drive option on the L Lines cannot be used if higher Vcc option is selected. When specifying a COP411L chip, Option 2 must be set to 3 , Options 20, 21, and 22 to 0 . The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various I/O components using little or no external circuitry.
Option $1=0$: Ground Pin - no options available
Option 2: CKO Output (no option available for COP411L)
= 0 : Clock output to ceramic resonator
$=1$: Pin is RAM power supply $\left(V_{R}\right)$ input
= 3: No connection
Option 3: CKI Input
$=0$: Oscillator input divided by 8 (500 kHz max)
$=1$: Single-pin RC controlled oscillator divided by 4
= 2: External Schmitt trigger level clock divided by 4
Option 4: RESET Input
$=0$: Load device to V_{CC}
= 1: Hi-Z input
Option 5: L7 Driver
= 0: Standard output
= 1: Open-drain output
= 2: High current LED direct segment drive output
= 3: High current TRI-STATE push-pull output
= 4: Low-current LED direct segment drive output
= 5: Low-current TRI-STATE push-pull output
Option 6: L L Driver
same as Option 5
Option 7: L_{5} Driver same as Option 5
Option 8: L ${ }_{4}$ Driver same as Option 5
Option 9: Operating voltage
COP41XL
COP31XL
$=0:+4.5 \mathrm{~V}$ to +6.3 V

$$
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Option 10: L_{3} Driver same as Option 5
Option 11: L_{2} Driver same as Option 5
Option 12: L 1 Driver same as Option 5
Option 13: Lo Driver same as Option 5
Option 14: SI Input
$=0$: load device to $V_{C C}$
= 1: Hi-Z input
Option 15: SO Driver
$=0$: Standard Output
= 1: Open-drain output
=2: Push-pull output
Option 16: SK Driver same as Option 15

Option List (Continued)
Option 17: Go I/O Port
$=0$: Standard output
= 1: Open-drain output
Option 18: G1 I/O Port
same as Option 17
Option 19: G_{2} I/O Port
same as Option 17
Option 20: G_{3} I/O Port (no option available for COP411L) same as Option 17
Option 21: D_{3} Output (no option available for COP411L)
$=0$: Very-high sink current standard output
= 1: Very-high sink current open-drain output
= 2: High sink current standard output
= 3: High sink current open-drain output
$=4$: Standard LSTTL output (fanout $=1$)
$=5$: Open-drain LSTTL output (fanout $=1$)
Option 22: D_{2} Output (no option available for COP411L)
same as Option 21
Option 23: D_{1} Output same as Option 21
Option 24: D_{0} Output

Option 25: L Input Levels
= 0: Standard TTL input levels (" 0 " = $0.8 \mathrm{~V}, " 1 "=2.0 \mathrm{~V}$)
$=1$: Higher voltage input levels ($" 0$ " $=1.2 \mathrm{~V}, " 1 "=3.6 \mathrm{~V}$)
Option 26: G Input Levels
same as Option 25
Option 27: SI Input Levels
same as Option 25
Option 28: COP Bonding
$=0$: COP410L (24-pin device)
= 1: COP411L (20-pin device)
= 2: Both 24- and 20-pin versions

TEST MODE (NON-STANDARD OPERATION)

The SO output has been configured to provide for standard test procedures for the custom-programmed COP410L. With SO forced to logic " 1 ", two test modes are provided, depending upon the value of SI :
a. RAM and Internal Logic Test Mode $(S I=1)$
b. ROM Test Mode ($\mathrm{SI}=0$)

These special test modes should not be employed by the user; they are intended for manufacturing test only.

Option Table

The following option information is to be sent to National along with the EPROM.

