National Semiconductor

COP224C/COP225C/COP226C/COP244C/COP245C Single-Chip 1k and 2k CMOS Microcontrollers

General Description

The COP224C, COP225C, COP226C, COP244C and COP245C fully static, Single-Chip CMOS Microcontrollers are members of the COPSTM family, fabricated using dou-ble-poly, silicon gate microCMOS technology. These Controller Oriented Processors are complete microcomputers containing all system timing, internal logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and I/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. The COP224C and COP244C are 28 pin chips. The COP225C and COP245C are 24 -pin versions (4 inputs removed) and COP226C is 20-pin version with 15 I/O lines. Standard test procedures and reliable high-density techniques provide the medium to large volume customers with a customized microcontroller at a low end-product cost. These microcontrollers are appropriate choices in many demanding control environments especially those with human interface.

Features

- Lowest power dissipation ($600 \mu \mathrm{~W}$ typical)
- Fully static (can turn off the clock)
- Power saving IDLE state and HALT mode
- $4.4 \mu \mathrm{~S}$ instruction time
- $2 k \times 8$ ROM, 128×4 RAM (COP244C/COP245C)
- 1k $\times 8$ ROM, 64×4 RAM (COP224C/COP225C/ COP226C)
- 23 I/O lines (COP244C and COP224C)
- True vectored interrupt, plus restart
- Three-level subroutine stack
- Single supply operation (4.5V to 5.5 V)
- Programmable read/write 8 -bit timer/event counter
- Internal binary counter register with MICROWIRETM serial I/O capability
- General purpose and TRI-STATE® outputs
- LSTTL/CMOS output compatible
- Software/hardware compatible with COP400 family
- Military temperature $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ operation

Block Diagram

Absolute Maximum Ratings

If Milltary/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage (VCC)
Voltage at any Pin
Total Allowable Source Current
Total Allowable Sink Current
Total Allowable Power Dissipation

Operating Temperature Range

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Storage Temperature Range

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Lead Temperature
(soldering, 10 seconds)
$300^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}$ unless otherwise specified

Parameter	Conditions	Min	Max	Units
Operating Voltage Power Supply Ripple (Note 5)	Peak to Peak	4.5	$\begin{gathered} 5.5 \\ 0.25 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
Supply Current (Note 1)	$V_{C C}=5.0 \mathrm{~V}, \mathrm{tc}=4.4 \mu \mathrm{~s}$ (tc is instruction cycle time)		5	mA
HALT Mode Current (Note 2)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~F}_{\text {IN }}=0 \mathrm{kHz}$		200	$\mu \mathrm{A}$
Input Voltage Levels RESET, CKI, D_{0} (clock input) Logic High Logic Low All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage		-10	+10	$\mu \mathrm{A}$
Input Capacitance (Note 4)			7	pF
Output Voltage Levels (except CKO) LSTTL Operation Logic High Logic Low CMOS Operation Logic High Logic Low	Standard Outputs $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{IOH}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A} \\ & \mathrm{IOH}^{2}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A} \end{aligned}$	$V_{C C}-0.2$	$\begin{aligned} & 0.6 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
CKO Current Levels (As Clock Out)	$\mathrm{CKI}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$ $\mathrm{CKI}=\mathrm{OV}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{OV}$	$\begin{gathered} 0.2 \\ 0.4 \\ 0.8 \\ -0.2 \\ -0.4 \\ -0.8 \end{gathered}$		mA mA mA mA mA mA
Allowable Sink/Source Current per Pin (Note 6)			5	mA
Allowable Loading on CKO (as HALT)			50	pF
Current Needed to Over-Ride HALT (Note 3) To Continue To Halt	$\begin{aligned} & V_{i N}=0.2 V_{C C} \\ & V_{I N}=0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
TRI-STATE or Open Drain Leakage Current		-10	$+10$	$\mu \mathrm{A}$

AC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq+5.5 \mathrm{~V}$ unless otherwise specified.

Parameter	Conditions	Min	Max	Units
Instruction Cycle Time (tc)		4.4	DC	$\mu \mathrm{s}$
$\left.\begin{array}{ll}\text { Operating CKI } & \div 4 \text { mode } \\ \text { Frequency } & \div 8 \text { mode } \\ & \div 16 \text { mode }\end{array}\right\}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.8 \\ & 3.6 \end{aligned}$	MHz MHz MHz
Duty Cycle (Note 4)	$\mathrm{f}_{1}=3.6 \mathrm{MHz}$	40	60	\%
Rise Time (Note 4)	$\mathrm{f}_{1}=3.6 \mathrm{MHz}$ External Clock		60	ns
Fall Time (Note 4)	$\mathrm{f}_{1}=3.6 \mathrm{MHz}$ External Clock		40	ns
Instruction Cycle Time RC Oscillator (Note 4)	$\begin{aligned} & R=30 k \pm 5 \% \\ & C=82 \mathrm{pF} \pm 5 \% \text { (} \div 4 \text { Mode) } \end{aligned}$	6	18	$\mu \mathrm{S}$
Inputs: (See Figure 3) (Note 4) tsetup thold	G Inputs SI Input All Others	$\begin{gathered} \mathrm{tc} / 4+0.8 \\ 0.33 \\ 1.9 \\ 0.4 \\ \hline \end{gathered}$		$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Output Propagation Delay tpD1, $^{\text {tPDO }}$	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$		1.4	$\mu \mathrm{s}$

Note 1: Supply current is measured after running for 2000 cycle times with a square-wave clock on CKI, CKO open, and all other pins pulled up to VCc with $5 k$ resistors. See current drain equation on page 13.
Note 2: The HALT mode will stop CKI from oscillating in the RC and crystal configurations. Test conditions: all inputs tied to VCC, L lines in TRI-STATE mode and tied to ground, all outputs low and tied to ground.
Note 3: When forcing HALT, current is only needed for a short time (approx. 200 ns) to flip the HALT flip-flop.
Note 4: This parameter is not tested but guaranteed by design. Variation due to the device included.
Note 5: Voltage change must be less than 0.25 volts in a 1 ms period.
Note 6: SO output sink current must be limited to keep $V_{O L}$ less than $0.2 \mathrm{~V}_{\mathrm{CC}}$ when part is running in order to prevent entering test mode.

Connection Diagrams

TLDD/8422-2
Order Number COP226C-XXX/N See NS Molded Package Number N20A

Order Number COP226C-XXX/D
See NS Hermetic Package Number D20A
Order Number COP226C-XXX/WM
See NS Surface Mount Package Number M20B

DIP

TL/DD/8422-4
Order Number COP224C-XXX/N or COP244C-XXX/N
See NS Molded Package Number N28B
Order Number COP224C-XXX/D or COP244C-XXX/D
See NS Hermetic Package Number D28C
S.O. Wide and DIP
 TL/DD/8422-3

Order Number COP225C-XXX/N or COP245C-XXX/N
See NS Molded Package Number N24A
Order Number COP225C-XXX/D or COP245C-XXX/D
See NS Hermetic Package Number D24C

28 PLCC

TL/DD/8422-13
Order Number COP224C-XXX/V or COP244C-XXX/V
See NS PLCC Package Number V28A

FIGURE 2

Pin Descriptions

Pin	Description
L7-LO	8-bit bidirectional port with TRI-STATE G3-GO
4-bit bidirectional	
D3-DO	I/O port
IN3-INO	4-bit output port
	4-bit input port
SI	(28 pin package only) SO
	Serial input or counter input Serial or general
	purpose output

Functional Description

The internal architecture is shown in Figure 1. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 ", when a bit is reset, it is a logic " 0 ".
Caution:
The output options available on the COP224C/225C/226C and COP244C/245C are not the same as those available on the COP324C/325C/326C, COP344C/345C, COP424C/ 425C/426C and COP444C/445C. Options not available on the COP224C/225C/226C and COP244C/245C are: Option 2 value 2; Option 4 value 0 ; Option 5 value 1; Option 9 value 0 ; Option 17 value 1; Option 30, Dual Clock, all values; Option 32, Microbus™, all values; Option 33 values 2, 4, and 6; Option 34 all values; and Option 35 all values.

PROGRAM MEMORY

Program Memory consists of ROM, 1024 bytes for the COP224C/225C/226C and 2048 bytes for the COP244C/ 245C. These bytes of ROM may be program instructions, constants or ROM addressing data.
ROM addressing is accomplished by an 11-bit PC register which selects one of the 8 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 11-bit binary count value.
Three levels of subroutine nesting are implemented by a three level deep stack. Each subroutine call or interrupt pushes the next PC address into the stack. Each return pops the stack back into the PC register.

DATA MEMORY

Data memory consists of a 512-bit RAM for the COP244C/ 245 C, organized as 8 data registers of 16×4-bit digits.

RAM addressing is implemented by a 7 -bit B register whose upper 3 bits (Br) select 1 of 8 data registers and lower 4 bits (Bd) select 1 of 16 4-bit digits in the selected data register. Data memory consists of a 256 -bit RAM for the COP224C/ $225 \mathrm{C} / 226 \mathrm{C}$, organized as 4 data registers of 16×4-bits digits. The B register is 6 bits long. Upper 2 bits (Br) select 1 of 4 data registers and lower 4 bits (Bd) select 1 of 164 -bit digits in the selected data register. While the 4-bit contents of the selected RAM digit (M) are usually loaded into or from, or exchanged with, the A register (accumulator), it may also be loaded into or from the Q latches or T counter or loaded from the L ports. RAM addressing may also be performed directly by the LDD and XAD instructions based upon the immediate operand field of these instructions.
The Bd register also serves as a source register for 4-bit data sent directly to the D outputs.

INTERNAL LOGIC

The processor contains its own 4-bit A register (accumulator) which is the source and destination register for most I/O, arithmetic, logic, and data memory access operations. It can also be used to load the Br and Bd portions of the B register, to load and input 4 bits of the 8 -bit Q latch or T counter, to input 4 bits of L I/O ports data, to input 4-bit G, or IN ports, and to perform data exchanges with the SIO register. A 4-bit adder performs the arithmetic and logic functions, storing the results in A. It also outputs a carry bit to the 1-bit C register, most often employed to indicate arithmetic overflow. The C register in conjunction with the XAS instruction and the EN register, also serves to control the SK output.
The 8 -bit T counter is a binary up counter which can be loaded to and from M and A using CAMT and CTMA instructions. This counter may be operated in two modes depending on a mask-programmable option: as a timer or as an external event counter. When the T counter overflows, an

Functional Description (Continued)

overlow flag will be set (see SKT and IT instructions below). The T counter is cleared on reset. A functional block diagram of the timer/counter is illustrated in Figure 7.
Four general-purpose inputs, IN3-INO, are provided.
The D register provides 4 general-purpose outputs and is used as the destination register for the 4-bit contents of Bd.
The G register contents are outputs to a 4-bit general-purpose bidirectional I/O port.
The Q register is an internal, latched, 8 -bit register, used to hold data loaded to or from M and A, as well as 8 -bit data from ROM. Its contents are outputted to the L I/O ports when the L drivers are enabled under program control.
The 8 L drivers, when enabled, output the contents of latched Q data to the L I/O port. Also, the contents of L may be read directly into A and M.
The SIO register functions as a 4-bit serial-in/serial-out shift register for MICROWIRE I/O and COPS peripherals, or as a binary counter (depending on the contents of the EN register). Its contents can be exchanged with A.
The XAS instruction copies C into the SKL latch. In the counter mode, SK is the output of SKL; in the shift register mode, SK outputs SKL ANDed with the clock.
EN is an internal 4-bit register loaded by the LEl instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register:
0 . The least significant bit of the enable register, ENO, selects the SIO register as either a 4-bit shift register or a 4-bit binary counter. With ENO set, SIO is an asynchronous binary counter, decrementing its value by one upon each low-going pulse (" 1 " to " 0 ") occurring on the SI input. Each pulse must be at least two instruction cycles wide. SK outputs the value of SKL. The SO output equals the value of EN3. With ENO reset, SIO is a serial shift register left shifting 1 bit each instruction cycle time. The data present at SI goes into the least significant bit of

SIO. SO can be enabled to output the most significant bit of SIO each cycle time. The SK outputs SKL ANDed with the instruction cycle clock.

1. With EN1 set, interrupt is enabled. Immediately following an interrupt, EN1 is reset to disable further interrupts.
2. With EN2 set, the L drivers are enabled to output the data in Q to the L I/O port. Resetting EN2 disables the L drivers, placing the L I/O port in a high-impedance input state.
3. EN3, in conjunction with ENO, affects the SO output. With ENO set (binary counter option selected) SO will output the value loaded into EN3. With ENO reset (serial shift register option selected), setting EN3 enables SO as the output of the SIO shift register, outputting serial shifted data each instruction time. Resetting EN3 with the serial shift register option selected disables SO as the shift register output; data continues to be shifted through SIO and can be exchanged with A via an XAS instruction but SO remains set to " 0 ".

INTERRUPT

The following features are associated with interrupt procedure and protocol and must be considered by the programmer when utilizing interrupts.
a. The interrupt, once recognized as explained below, pushes the next sequential program counter address (PC+1) onto the stack. Any previous contents at the bottom of the stack are lost. The program counter is set to hex address OFF (the last word of page 3) and EN1 is reset.
b. An interrupt will be recognized only on the following conditions:

1. EN1 has been set.
2. A low-going pulse (" 1 " to " 0 ") at least two instruction cycles wide has occurred on the N_{1} input.
3. A currently executing instruction has been completed.

OUTPUTS
FIGURE 3. Input/Output Timing Diagrams (divide by 8 mode)

TABLE I. Enable Register Modes - Bits EN0 and EN3

ENO	EN3	SIO	SI	SO	SK
0	0	Shift Register	Input to Shift Register	0	$\begin{aligned} & \text { If } S K L=1, S K=\text { clock } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
0	1	Shift Register	Input to Shift Register	Serial out	$\begin{aligned} & \text { If } S K L=1, S K=\text { clock } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	0	Binary Counter	input to Counter	0	SK $=$ SKL
1	1	Binary Counter	Input to Counter	1	SK $=$ SKL

Functional Description (Continued)
4. All successive transfer of control instructions and successive LBls have been completed (e.g. if the main program is executing a JP instruction which transfers program control to another JP instruction, the interrupt will not be acknowledged until the second JP instruction has been executed).
c. Upon acknowledgement of an interrupt, the skip logic status is saved and later restored upon popping of the stack. For example, if an interrupt occurs during the execution of ASC (Add with Carry, Skip on Carry) instruction which results in carry, the skip logic status is saved and program control is transferred to the interrupt servicing routine at hex address OFF. At the end of the interrupt routine, a RET instruction is executed to pop the stack and return program control to the instruction following the original ASC. At this time, the skip logic is enabled and skips this instruction because of the previous ASC carry. Subroutines should not be nested within the interrupt service routine, since their popping of the stack will enable any previously saved main program skips, interfering with the orderly execution of the interrupt routine.
d. The instruction at hex address OFF must be a NOP.
e. An LEI instruction may be put immediately before the RET instruction to re-enable interrupts.

INITIALIZATION

The internal reset logic will initialize the device upon powerup if the power supply rise time is less than 1 ms and if the operating frequency at CKI is greater than 32 kHz , otherwise the external RC network shown in Figure 4 must be connected to the RESET pin (the conditions in Figure 4 must be met). The RESET pin is configured as a Schmitt trigger input. If not used, it should be connected to VCc. Initialization will occur whenever a logic " 0 " is applied to the RESET input, providing it stays low for at least three instruction cycle times.
Note: If CKI clock is less than 32 kHz , the internal reset logic (option *29 = 1) MUST be disabled and the external RC circuit must be used.

TL/DD/8422-6
FIGURE 4. Power-Up Circuit

Upon initialization, the PC register is cleared to 0 (ROM address 0) and the A, B, C, D, EN, IL, T and G registers are cleared. The SKL latch is set, thus enabling SK as a clock output. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA (clear A register).

TIMER

There are two modes selected by mask option:
a. Time-base counter. In this mode, the instruction cycle frequency generated from CKI passes through a 2-bit divide-by-4 prescaler. The output of this prescaler increments the 8 -bit T counter thus providing a 10 -bit timer. The prescaler is cleared during execution of a CAMT instruction and on reset.
For example, using a 3.58 MHz crystal with a divide-by-16 option, the instruction cycle frequency of 223.70 kHz increments the 10 -bit timer every $4.47 \mu \mathrm{~s}$. By presetting the counter and detecting overfiow, accurate timeouts between $17.88 \mu \mathrm{~s}$ (4 counts) and 4.577 ms (1024 counts) are possible. Longer timeouts can be achieved by accumulating, under software control, multiple overflows.
b. External event counter. In this mode, a low-going pulse ("1" to "0") at least 2 instruction cycles wide on the IN2 input will increment the 8 -bit T counter.
Note: The IT instruction is not allowed in this mode.

Crystal or Resonator

Crystal Value	Component Values			
	$\mathbf{R 1}$	$\mathbf{R 2}$	$\mathbf{C 1}(\mathrm{pF})$	$\mathbf{C 2 (p F)}$
32 kHz	220 k	20 M	30	$6-36$
455 kHz	5 k	10 M	80	40
2.096 MHz	2 k	1 M	30	$6-36$
3.6 MHz	1 k	1 M	30	$6-36$

RC Controlled Oscillator

R	C	Cycle Time	VCC
30 k	82 pF	$6-18 \mu \mathrm{~s}$	24.5 V

Note: $15 k \leq R \leq 150 k$
$50 \mathrm{pF} \leq \mathrm{C} \leq 150 \mathrm{pF}$
FIGURE 5. Oscillator Component Values

Functional Description (Continued)

HALT MODE

The COP244C/245C/224C/225C/226C is a FULLY STATIC circuit; therefore, the user may stop the system oscillator at any time to halt the chip. The chip may also be halted by the HALT instruction or by forcing CKO high when it is mask-programmed as a HALT I/O port. Once in the HALT mode, the internal circuitry does not receive any clock signal and is therefore frozen in the exact state it was in when halted. All information is retained until continuing. The chip may be awakened by one of two different methods:

- Continue function: by forcing CKO low, if it mask-programmed as a HALT I/O port, the system clock is re-enabled and the circuit continues to operate from the point where it was stopped.
- Restart: by forcing the RESET pin low (see Initialization).
The HALT mode is the minimum power dissipation state.

CKO PIN OPTIONS

a. Two-pin oscillator-(Crystal). See Figure 6a.

In a crystal controlled oscillator system, CKO is used as an output to the crystal network. The HALT mode may be entered by program control (HALT instruction) which forces CKO high, thus inhibiting the crystal network. The circuit can be awakened only by forcing the RESET pin to a logic "0" (restart).
b. One-pin oscillator-(RC or external). See Figure 6 b.

If a one-pin oscillator system is chosen, two options are available for CKO:

- CKO can be selected as the HALT I/O port. In that case, it is an I/O flip-flop which is an indicator of the HALT status. An external signal can over-ride this pin to start and stop the chip. By forcing a high level to CKO, the chip will stop as soon as CKI is high and CKO output will stay high to keep the chip stopped if
the external driver returns to high impedance state. By forcing a low level to CKO, the chip will continue and CKO will stay low.
- As another option, CKO can be a general purpose input, read into bit 2 of A (accumulator) upon execution of an INIL instruction.

OSCILLATOR OPTIONS

There are three basic clock oscillator configurations available as shown by Figure 5.
a. Crystal Controlled Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals the crystal frequency optionally divided by 4, 8 or 16.
b. External Oscillator. The extemal frequency is optionally divided by 4,8 or 16 to give the instruction cycle time. CKO is the HALT I/O port or a general purpose input.
c. RC Controlled Oscillator. CKI is conligured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is the HALT I/O port or a general purpose input.
Figure 7 shows the clock and timer diagram.
COP245C AND COP225C 24-PIN PACKAGE OPTION
If the COP244C/224C is bonded in a 24 -pin package, it becomes the COP245C/225C, illustrated in Figure 2, Connection diagrams. Note that the COP245C/225C does not contain the four general purpose $\mathbb{I N}$ inputs (IN3-INO). Use of this option precludes, of course, use of the IN options, interrupt feature, external event counter feature.
Note: If user selects the 24 -pin package, options 9, 10, 19 and 20 must be selected as a " 2 ". See option list.

COP226C 20-PIN PACKAGE OPTION

If the COP225C is bonded as 20-pin device it becomes the COP226C. Note that the COP226C contains all the COP225C pins except D_{0}, D_{1}, G_{0}, and G_{1}.

Block Diagram

FIGURE 6a. Halt Mode-Two-Pin Oscillator

TL/DD/8422-10
FIGURE 7. Clock and Timer

Instruction Set

Table II is a symbol table providing internal architecture, instruction operand and operation symbols used in the instruction set table.

TABLE II. Instructlon Set Table Symbols

Symbol	Definition
Internal Architecture Symbols	
A	4-bit accumulator
B	7-bit RAM address register (6-bit for COP224C)
Br	Upper 3 bits of B (register address)
	(2-bit for COP224C)
Bd	Lower 4 bits of B (digit address)
C	1-bit carry register
D	4-bit data output port
EN	4-bit enable register
G	4-bit general purpose I/O port
IL	two 1-bit (INO and IN3) latches
IN	4-bit input port
L	8-bit TRI-STATE I/O port
M	4-bit contents of RAM addressed by B
PC	11-bit ROM address program counter
Q	8-bit latch for L port
SA,SB,SC	11-bit 3-level subroutine stack
SIO	4-bit shift register and counter
SK	Logic-controlled clock output
SKL	1-bit latch for SK output
T	8-bit timer

Instruction Operand Symbols	
	4-bit operand field, 0-15 binary (RAM digit select)
	3(2)-bit operand field, 0-7(3) binary
	(RAM register select)
	11-bit operand field, 0-2047 (1023)
	4-bit operand field, 0-15 (immediate data)
RAM((x)	RAM addressed by variable x
ROM (x)	ROM addressed by variable x
Operational Symbols	
+	Plus
$-$	Minus
\rightarrow	Replaces
\longleftrightarrow	Is exchanged with
	Is equal to
\bar{A}	One's complement of A
\oplus	Exclusive-or
:	Range of values

Table III provides the mnemonic, operand, machine code data flow, skip conditions and description of each instruction.

TABLE III. COP244C/245C Instruction Set

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description	
ARITHMETIC INSTRUCTIONS							
ASC		30	10011,0000	$\begin{aligned} & A+C+A A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with Carry, Skip on Carry	
ADD		31	00011 00011	$A+R A M(B) \rightarrow A$	None	Add RAM to A	
ADT		4A	\|0100	1010	$A+10_{10} \rightarrow A$	None	Add Ten to A
AISC	y	5-	0101 y y	$A+y \rightarrow A$	Carry	Add Immediate. Skip on Carry $(y \neq 0)$	
CASC		10	00010000	$\begin{aligned} & \bar{A}+R A M(B)+C \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Complement and Add with Carry, Skip on Carry	
CLRA		00	1000010000	$0 \rightarrow A$	None	Clear A	
COMP		40	010010000	$\bar{A} \rightarrow A$	None	Ones complement of A to A	
NOP		44	0100/0100	None	None	No Operation	
RC		32	10011 00010	"0" \rightarrow C	None	Reset C	
SC		22	1001010010	$" 1 " \rightarrow C$	None	Set C	
XOR		02	-0000\|0010	$A \oplus R A M(B) \rightarrow A$	None	Exclusive-OR RAM with A	

Instruction Set (Continued)
TABLE III. COP244C/245C Instruction Set (Continued)

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Sklp Conditions	Description

TRANSFER CONTROL INSTRUCTIONS

JID		FF	\|1111/11111	$R O M\left(P_{10: 8} A, M\right) \rightarrow P C_{7: 0}$	None	Jump Indirect (Notes 1, 3)
JMP	a		$\frac{\|0110\| 0\left\|a_{10: 8}\right\|}{\left[a_{7: 0} \mid\right.}$	$a \rightarrow P C$	None	Jump
JP	a	-		$a \rightarrow P C_{6: 0}$ $a \rightarrow P C_{5: 0}$	None	Jump within Page (Note 4)
JSRP	a	-		$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & 00010 \rightarrow \mathrm{PC}_{10: 6} \\ & \mathrm{a} \rightarrow \mathrm{PC}_{5: 0} \end{aligned}$	None	Jump to Subroutine Page (Note 5)
JSR	a	$6-$	$\begin{aligned} & 0110\|1\| a_{10: 8} \\ & \hline a_{7}: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & \mathrm{a} \rightarrow \mathrm{PC} \end{aligned}$	None	Jump to Subroutine
RET		48	10100\|1000	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	None	Return from Subroutine
RETSK		49	10100\|1001	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	Always Skip on Return	Return from Subroutine then Skip
HALT		33	10011 0011		None	HALT Processor
		38	001111000			
IT		33	001110011			IDLE till Timer
		39	10011 1001		None	Overflows then Continues

CAMT		33	10011\|0011	$A \rightarrow T_{7: 4}$		
		3 F	0011\|1111	$\mathrm{RAM}(\mathrm{B}) \rightarrow \mathrm{T}_{3: 0}$	None	Copy A, RAM to T
CTMA		33	001110011	$\mathrm{T}_{7: 4} \rightarrow$ RAM (B)		
		$2 F$	0010\|1111	$\mathrm{T}_{3: 0} \rightarrow \mathrm{~A}$	None	Copy T to RAM, A
CAMQ		33	0011 00011	$A \rightarrow Q_{7: 4}$	None	Copy A, RAM to Q
		3 C	0011 1100	RAM $(B) \rightarrow \mathrm{Q}_{3: 0}$		
CQMA		33	0011 0011	$\mathrm{Q}_{7: 4} \rightarrow$ RAM (B)	None	Copy Q to RAM, A
		2 C	0010\|1100	$\mathrm{Q}_{3: 0} \rightarrow \mathrm{~A}$		
LD	r	-5	$\frac{00\|r\| 0101 \mid}{(r=0: 3)}$	$\begin{aligned} & R A M(B) \rightarrow A \\ & B r \oplus r \rightarrow B r \end{aligned}$	None	Load RAM into A, Exclusive-OR Br with r
LDD	r,d	23	$\begin{array}{\|l\|l\|l\|} \hline 0010 & 00111 \\ \hline 0 & r & d \\ \hline \end{array}$	RAM $(\mathrm{r}, \mathrm{d}) \rightarrow \mathrm{A}$	None	Load A with RAM pointed to directly by r, d
LQID		BF	[1011\|1111	$\begin{aligned} & \operatorname{ROM}\left(\mathrm{PC}_{10: 8}, A, M\right) \rightarrow Q \\ & S B \rightarrow S C \end{aligned}$	None	Load Q Indirect (Note 3)
RMB	0	4 C	10100\|1100	$0 \rightarrow$ RAM $(B)_{0}$	None	Reset RAM Bit
	1	45	[0100/0101	$0 \rightarrow R A M(B)_{1}$		
	2	42	1010010010	$0 \rightarrow \mathrm{RAM}(\mathrm{B})_{2}$		
	3	43	0100\|0011	$0 \rightarrow \mathrm{RAM}(\mathrm{B})_{3}$		
SMB	0	4D	10100\|1101	$1 \rightarrow \mathrm{RAM}(\mathrm{B})_{0}$	None	Set RAM Bit
	1	47	0100\|0111	$1 \rightarrow \mathrm{RAM}(\mathrm{B})_{1}$		
	2	46	010010110	$1 \rightarrow \mathrm{RAM}(\mathrm{B})_{2}$		
	3	4B	0100\|1011	$1 \rightarrow \mathrm{RAM}(\mathrm{B})_{3}$		

Instruction Set (Continued)						
TABLE III. COP244C/245C Instruction Set (Continued)						
Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description
MEMORY REFERENCE INSTRUCTIONS (Continued)						
STII	y	7-	0111 y	$\begin{aligned} & y \rightarrow \operatorname{RAM}(B) \\ & B d+1 \rightarrow B d \end{aligned}$	None	Store Memory Immediate 1 and Increment Bd
x	r	-6	$\frac{\|00\| r\|0110\|}{(r=0: 3)}$	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \longleftrightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \longrightarrow \mathrm{Br} \end{aligned}$	None	Exchange RAM with A, Exclusive-OR Br with r
XAD	r,d	23	$\begin{array}{\|l\|l\|l\|} \hline 0010 & 0011 \\ \hline 1 & \hline \end{array}$	RAM $(\mathbf{r}, \mathrm{d}) \longleftrightarrow A$	None	Exchange A with RAM Pointed to Directly by r,d
XDS	r	-7	$\frac{100\|r\| 0111 \mid}{(r=0: 3)}$	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \longleftrightarrow \mathrm{A} \\ & \mathrm{Bd}-1 \longrightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd. Exclusive-OR Br with r
XIS	r	-4	$\begin{array}{l\|l\|l\|l\|} \hline 00\|r\| 0100 \\ (r=0: 3) \end{array}$	$\begin{aligned} & \operatorname{RAM}(B) \longleftrightarrow A \\ & \mathrm{Bd}+1 \rightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	Bd increments past 15	Exchange RAM with A and Increment Bd, Exclusive-OR Br with r
REGISTER REFERENCE INSTRUCTIONS						
CAB		50	[0101/0000	$\mathrm{A} \rightarrow \mathrm{Bd}$	None	Copy A to Bd
CBA		4E	-0100\|1110	$\mathrm{Bd} \rightarrow \mathrm{A}$	None	Copy Bd to A
LBI	r,d	-- 33 --	$\begin{gathered} \begin{array}{c} \hline 00\|r\|(d-1) \mid \\ \hline(r=0: 3: \\ d=0,9: 15) \\ o r \end{array} \\ \begin{array}{c} 0011\|0011\| \\ \hline 1\|r\| d \\ \hline(\text { any } r, \text { any } d) \end{array} \end{gathered}$	$r, d \rightarrow B$	Skip until not a LBI	Load B Immediate with r,d (Note 6)
LEI	y	33 $6-$	0011 0110 010	$y \rightarrow E N$	None	Load EN Immediate (Note 7)
XABR		12	10001/0010	$A \longleftrightarrow \mathrm{Br}$	None	Exchange A with Br (Note 8)
TEST INSTRUCTIONS						
SKC		20	001010000		$\mathrm{C}=\times 1 "$	Skip if C is True
SKE		21	001010001		$A=R A M(B)$	Skip if A Equals RAM
SKGZ		33 21	$0011\|0011\|$ 0010 10001		$\mathrm{G}_{3: 0}=0$	Skip if G is Zero (all 4 bits)
SKGBZ		33	[0011 00011 1	1st byte		Skip if G Bit is Zero
	0	01	0000/0001		$\mathrm{G}_{0}=0$	
	1	11	0001\|0001		$\mathrm{G}_{1}=0$	
	2	03 13	0000 0011 0001 0011	2nd byte	$\begin{aligned} & \mathrm{G}_{2}=0 \\ & \mathrm{G}_{3}=0 \end{aligned}$	
SKMBZ	0	01	0000100011		$\operatorname{RAM}(\mathrm{B})_{0}=0$	Skip if RAM Bit is Zero
	1	11	000110001		$\operatorname{RAM}(B)_{1}=0$	
	2	03	0000\|0011		$\operatorname{RAM}(\mathrm{B})_{2}=0$	
	3	13	00010011		$\operatorname{RAM}(\mathrm{B})_{3}=0$	
SKT		41	0100100011		A time-base counter carry has occurred since last test	Skip on Timer (Note 3)

Instruction Set (Continued)
TABLE III. COP244C/245C Instruction Set (Continued)

Mnemonic	Operand	Hex Code	MachIne Language Code (Binary)	Data Flow	Skip Conditions	Description	
INPUT/OUTPUT INSTRUCTIONS							
ING		33	[0011 0011]	$\mathrm{G} \rightarrow \mathrm{A}$	None	Input G Ports to A	
		2A	001011010				
ININ		33	\|0011 ${ }^{\text {[00111 }}$	$\mathbb{N} \rightarrow \mathrm{A}$	None	Input IN Inputs to A (Note 2)	
		28	0010\|1000				
INIL		33	[0011 0011	$\mathrm{IL}_{3}, \mathrm{CKO}$, "O", $\mathrm{IL}_{0} \rightarrow \mathrm{~A}$	None	Input IL Latches to A (Note 3)	
		29	0010 1001				
INL		33	[0011 0011	$L_{7: 4} \rightarrow$ RAM(B)	None	Input L Ports to RAM, A	
		2 E	0010/1110	$L_{3: 0} \rightarrow A$			
OBD		33	001110011	$\mathrm{Bd} \rightarrow \mathrm{D}$	None	Output Bd to D Outputs	
		3E	0011 [1110				
OGI	y	33	0011 0011	$y \rightarrow G$	None	Output to G Ports Immediate	
		5-	01011				
OMG		33	0011 0011	RAM (B) \rightarrow G	None	Output RAM to G Ports	
		3A	\|0011	1010			
XAS		4F	\|0100	1111	$A \longleftrightarrow S I O, C \rightarrow S K L$	None	Exchange A with SIO (Note 3)

Note 1: All subscripts for alphabetical symbols indicate blt numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least significant bit (low-order, ight-most bit). For example, A_{3} Indicates the most signiflcant (left-most) bit of the 4 -bit A register.
Note 2: The ININ instruction is not available on the 24 -pin packages since these devices do not contain the IN inputs.
Note 3: For additional information on the operation of the XAS, JID, LQID, INIL, and SKT instructions, see below.
Note 4: The JP instruction allows a Jump, while in subroutine pages 2 or 3, to any ROM location within the two-page boundary of pages 2 or 3 . The JP Instruction, othewise, permits a Jump to a ROM location within the current 64 -word page. JP may not jump to the last word of a page.
Note 5: A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 blts of P). A JSRP may not be used when in pages 2 or 3 . JSRP may not jump to the last word in page 2.
Note 6: LBI is a single-byte instruction if $d=0,9,10,11,12,13,14$, or 15 . The machine code for the lower 4 bits equals the binary value of the " d " data minus 1 . e.g., to load the lower four blts of $B(B d)$ with the value $9\left(1001_{2}\right)$, the lower 4 bits of the LBI instruction equal $8\left(1000_{2}\right)$. To load 0 , the lower 4 bits of the LBI instruction should equal 15 (11112).
Note 7: Machine code for operand field y for LEI instruction should equal the binary value to be latched into EN, where a " 1 " of " 0 " in each blt of EN corresponds with the selection or deselection of a particular function associated with each blt. (See Functional Description, EN Register.)
Note 8: For 2 K ROM devices, $\mathrm{A} \longleftrightarrow \mathrm{Br}(0 \rightarrow A 3)$. For 1 K ROM devices, $\mathrm{A} \longleftrightarrow \mathrm{Br}(0,0 \rightarrow \mathrm{~A} 3, \mathrm{~A} 2)$.

Description of Selected Instructions

XAS INSTRUCTION

XAS (Exchange A with SIO) copies C to the SKL latch and exchanges the accumulator with the 4-bit contents of the SIO register. The contents of SIO will contain serial-in/seri-al-out shift register or binary counter data, depending on the value of the EN register. If SIO is selected as a shift register, an XAS instruction can be performed once every 4 instruction cycles to effect a continuous data stream.

LQID INSTRUCTION

LQID (Load Q Indirect) loads the 8-bit Q register with the contents of ROM pointed to by the 11 -bit word PC10:PC8,A,M. LQID can be used for table lookup or code conversion such as BCD to seven-segment. The LQID instruction "pushes" the stack (PC+1 \rightarrow SA \rightarrow SB \rightarrow SC) and replaces the least significant 8 bits of the PC as follows: $A \rightarrow P C 7: 4, R A M(B) \rightarrow$ PC3:0, leaving PC10, PC9 and PC8 unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" (SC \rightarrow SB \rightarrow SA $\rightarrow P C$), restoring the saved value of PC to continue sequential program execution. Since LQID pushes SB \rightarrow SC, the previous contents of SC are lost.
Note: LQID uses 2 instruction cycles if executed, one if skipped.
JID INSTRUCTION
JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 11-bit word, PC10:8,A,M. PC10,PC9 and PC8 are not affected by JID.
Note: JID uses 2 instruction cycles if executed, one if skipped.

SKT INSTRUCTION

The SKT (Skip On Timer) instruction tests the state of the T counter overflow latch (see internal logic, above), executing the next program instruction if the latch is not set. If the latch has been set since the previous test, the next program instruction is skipped and the latch is reset. The features associated with this instruction allow the processor to generate its own time-base for real-time processing, rather than relying on an external input signal.
Note: If the most significant bit of the T counter is a 1 when a CAMT instruction loads the counter, the overlow flag will be set. The following sample of codes should be used when loading the counter: CAMT ; load T counter
SKT ; skip if overflow flag is set and reset it
NOP

IT INSTRUCTION

The IT (idele till timer) instruction halts the processor and puts it in an idle state until the time-base counter overflows. This idle state reduces current drain since all logic (except the oscillator and time base counter) is stopped. IT instruction is not allowed if the T counter is mask-programmed as an external event counter (option \#31 = 1).

INIL INSTRUCTION

INIL (Input IL Latches to A) inputs 2 latches, IL3 and ILO, CKO and 0 into A. The IL3 and ILO latches are set if a lowgoing pulse (" 1 " to " 0 ") has occurred on the IN3 and INO inputs since the last INIL instruction, provided the input
pulse stays low for at least two instruction cycles. Execution of an INIL inputs IL3 and ILO into A3 and AO respectively, and resets these latches to allow them to respond to subsequent low-going pulses on the IN3 and INO lines. If CKO is mask programmed as a general purpose input, an INIL will input the state of CKO into A2. If CKO has not been so programmed, a " 1 " will be placed in A2. A0 is input into A1. IL latches are cleared on reset. IL latches are not available on the COP245C/225C, and COP226C.

INSTRUCTION SET NOTES

a. The first word of a program (ROM address 0) must be a CLRA (Clear A) instruction.
b. Although skipped instructions are not executed, they are still fetched from the program memory. Thus program paths take the same number of cycles whether instructions are skipped or executed except for JID, and LQID.
c. The ROM is organized into pages of 64 words each. The Program Counter is a 11-bit binary counter, and will count through page boundaries. If a JP, JSRP, JID, or LQID is the last word of a page, it operates as if it were in the next page. For example: a JP located in the last word of a page will jump to a location in the next page. Also, a JID or LQID located in the last word of every fourth page (i.e. hex address OFF, 1FF, 2FF, 3FF, 4FF, etc.) will access data in the next group of four pages.
Note: The COP224C/225C/226C needs only 10 bits to address its ROM. Therefore, the eleventh bit (P10) is ignored.

Power Dissipation

The lowest power drain is when the clock is stopped. As the frequency increases so does current. Current is also lower at lower operating voltages. Therefore, the user should run at the lowest speed and voltage that his application will allow. The user should take care that all pins swing to full supply levels to insure that outputs are not loaded down and that inputs are not at some intermediate level which may draw current. Any input with a slow rise or fall time will draw additional current. A crystal or resonator generated clock input will draw additional current. For example, a 500 kHz crystal input will typically draw $100 \mu \mathrm{~A}$ more than a squarewave input. An R/C oscillator will draw even more current since the input is a slow rising signal.
If using an external squarewave oscillator, the following equation can be used to calculate operating current drain.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{CO}}=\mathrm{I}_{\mathrm{Q}}+\mathrm{V} \times 70 \times \mathrm{Fi}+\mathrm{V} \times 2400 \times \mathrm{Fi} / \mathrm{Dv} \text { where: } \\
& \mathrm{I}_{\mathrm{CO}}=\text { chip operating current drain in microamps } \\
& \mathrm{I}_{\mathrm{Q}}=\text { quiescent leakage current (from curve) } \\
& \mathrm{Fi}_{\mathrm{I}}=\mathrm{CKI} \text { frequency in MegaHertz } \\
& \mathrm{V}=\mathrm{chip} \mathrm{~V}_{\mathrm{CC}} \text { in volts } \\
& \mathrm{DV}=\text { divide by option selected }
\end{aligned}
$$

For example at 5 volts V_{CC} and 400 kHz (divide by 4)

$$
\begin{aligned}
& I_{C O}=120+5 \times 70 \times 0.4+5 \times 2400 \times 0.4 / 4 \\
& I_{C O}=120+140+1200=1460 \mu \mathrm{~A}
\end{aligned}
$$

Power Dissipation (Continued)
If an IT instruction is executed, the chip goes into the IDLE mode until the timer overflows. In IDLE mode, the current drain can be calculated from the following equation:

$$
I c i=I_{Q}+V \times 70 \times F i
$$

For example, at 5 volts $V_{C C}$ and 400 kHz

$$
I c i=120+5 \times 70 \times 0.4=260 \mu \mathrm{~A}
$$

The total average current will then be the weighted average of the operating current and the idle current:

$$
I t a=I C O \times \frac{T o}{T o+T i}+I c i \times \frac{T_{i}}{T 0+T i}
$$

where: Ita = total average current
$I_{C O}=$ operating current
$\mathrm{lci}=$ idle current
To =operating time
$\mathrm{Ti}=$ idle time

I/O OPTIONS

Outputs have the following optional configurations, illustrated in Figure 8:
a. Standard - A CMOS push-pull buffer with an N -channel device to ground in conjunction with a P-channel device to V_{CC}, compatible with CMOS and LSTTL.
b. Open Drain - An N-channel device to ground only, allowing external pull-up as required by the user's application.
c. Standard TRI-STATE L Output - A CMOS output buffer similar to a. which may be disabled by program control.
d. Open-Drain TRI-STATE L Output - This has the N-channel device to ground only.

All inputs have the following option:
e. Hi-Z input which must be driven by the users logic.

All output drivers use two common devices numbered 1 to 2. Minimum and maximum current (IOUT and $\mathrm{V}_{\text {OUT }}$) curves are given in Figure 9 for each of these devices to allow the designer to effectively use these I/O configurations.

a. Standard Push-Pull Output

b. Open-Drain Output

c. Standard TRI-STATE "L" Output

d. Open Drain TRI-STATE "L"Output

e. $\mathrm{HI}-\mathrm{Z}$ Input

FIGURE 8. Input/Output Configurations

Power Dissipation (Continued)

FIGURE 9. Input/Output Characteristics

Option List

The COP244C/245C/224C/225C/COP226C mask-programmable options are assigned numbers which correspond with the COP244C/224C pins.
The following is a list of options. The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various I/O components using little or no external circuitry.
Caution:
The output options available on the COP224C/225C/226C and COP244C/245C are not the same as those available on the COP324C/325C/326C, COP344C/345C, COP424C/ 425C/426C and COP444C/445C. Options not available on the COP224C/225C/226C and COP244C/245C are: Option 2 value 2; Option 4 value 0; Option 5 value 1; Option 9 value 0 ; Option 17 value 1; Option 30, Dual Clock, all values; Option 32, Microbus, all values; Option 33 values 2 4, and 6; Option 34 all values; and Option 35 all values.
PLEASE FILL OUT THE OPTION TABLE on the next page. Photocopy the option data and send it in with your disk or EPROM.
Option 1 =0: Ground Pin — no options available
Option 2: CKO Pin
=0: clock generator output to crystal/resonator
= 1: HALT I/O port
=3: general purpose input, high-Z
Option 3: CKI input
=0: Crystal controlled oscillator input divide by 4
=1: Crystal controlled oscillator input divide by 8
=2: Crystal controlled oscillator input divide by 16
=4: Single-pin RC controlled oscillator (divide by 4)
=5: External oscillator input divide by 4
=6: External oscillator input divide by 8
=7: External oscillator input divide by 16

Option 4: $\overline{\text { RESET input }}$ $=1$: $\mathrm{Hi}-\mathrm{Z}$ input
Option 5: L7 Driver
=0: Standard TRI-STATE push-pull output
=2: Open-drain TRI-STATE output
Option 6: L6 Driver - (same as option 5)
Option 7: L5 Driver - (same as option 5)
Option 8: L4 Driver - (same as option 5)
Option 9: IN1 input
$=1: \mathrm{Hi}-\mathrm{Z}$ input, mandatory for 28 Pin Package
=2: Mandatory for 20 and 24 Pin Packages
Option 10: IN2 input - (same as option 9)
Option 11=0: VCC Pin - no option available
Option 12: L3 Driver - (same as option 5)
Option 13: L2 Driver - (same as option 5)
Option 14: L1 Driver - (same as option 5)
Option 15: Lo Driver - (same as option 5)
Option 16: SI input - (same as option 4)
Option 17: SO Driver
=0: Standard push-pull output
=2: Open-drain output
Option 18: SK Driver - (same as option 17)
Option 19: INO Input - (same as option 9)
Option 20: IN3 Input - (same as option 9)
Option 21: GO I/O Port - (same as option 17)
Option 22: G1 I/O Port - (same as option 17)
Option 23: G2 I/O Port - (same as option 17)
Option 24: G3 I/O Port - (same as option 17)
Option 25: D3 Output - (same as option 17)
Option 26: D2 Output - (same as option 17)
Option 27: D1 Output - (same as option 17)

Option List (Continued)

Option 28: DO Output - (same as option 17)
Option 29: Internal Initialization Logic
$=0$: Normal operation
$=1$: No internal initialization logic
Option $30=0$: No Option Available
Option 31: Timer
$=0$: Time-base counter
=1: External event counter
Option 32=0: No Option Available

Option 33: COP bonding. See note.
(1 k and 2 k Microcontroller)
=0: 28-pin package
= 1: 24-pin package
(1k Microcontroller only)
=3: 20-pin package
$=5$: 24- and 20 -pin package
Note:-If opt. \#33=0 then opt. \#9, 10, 19, and 20 must $=1$.
If opt. \#33=1 then opt. \#9, 10, 19 and 20 must = 2 , and option \#31 must $=0$.
If opt. \#33=3 or 5 then opt. \#9, 10, 19, 20 must $=2$ and opt. \#21, 22, 31 must $=0$.
Option $34=0$: No Option Available
Option $35=0$: No Option Available

Option Table

The following option information is to be sent to National along with the EPROM.

OPTION DATA

OPTION	1 VALUE =	0	IS: GROUND PIN
OPTION	2 VALUE $=$		IS: CKO PIN
OPTION	3 VALUE $=$		IS: CKI INPUT
OPTION	4 VALUE $=$	1	IS: RESET INPUT
OPTION	5 VALUE $=$		IS: 17 DRIVER
OPTION	6 VALUE $=$		IS: L6 DRIVER
OPTION	7 VALUE $=$		IS: L5 DRIVER
OPTION	8 VALUE $=$		IS: L4 DRIVER
OPTION	9 VALUE $=$		IS: IN1 INPUT
OPTION	10 VALUE =		IS: IN2 INPUT
OPTION	11 VALUE =	0	IS: VCC PIN
OPTION	12 VALUE =		IS: L3 DRIVER
OPTION	13 VALUE =		IS: L2 DRIVER
OPTION	14 VALUE =		IS: L1 DRIVER
OPTION	15 VALUE =		IS: LO DRIVER
OPTION	16 VALUE =	1	IS: SI INPUT
OPTION	17 VALUE =		IS: SO DRIVER
OPTION	18 VALUE $=$		IS: SK DRIVER

OPTION DATA

