COP210C/COP211C Single-Chip CMOS Microcontrollers

General Description

The COP210C and COP211C fully static, single-chip CMOS microcontrollers are members of the COPSTM family, fabricated using double-poly, silicon-gate CMOS technology. These controller-oriented processors are complete microcomputers containing all system timing, internal logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture, and I/O scheme designed to facilitate keyboard input, display output, and BCD data manipulation. The COP211C is identical to the COP210C but with $16 \mathrm{I} / \mathrm{O}$ lines instead of 20 . They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized control-ler-oriented processor at a low end-product cost.
The COP404C should be used for exact emulation.

Features

- Lowest power dissipation ($500 \mu \mathrm{~W}$ typical)
- Low cost
- Power-saving HALT mode with Continue function
- Powerful instruction set
- 512×8 ROM, 32×4 RAM
- 20 I/O lines (COP210C)
- Two-level subroutine stack
- DC to $4.4 \mu \mathrm{~s}$ instruction time
- Single supply operation (4.5 V to 5.5 V)
- General purpose and TRI-STATE® outputs
- Internal binary counter register with MICROWIRETM compatible serial I/O
- LSTTL/CMOS compatible in and out
- Software/hardware compatible with other members of the COP400 family
- Military temperature $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ devices

Block Diagram

FIGURE 1. COP210C
Absolute Maximum Ratings
If Milltary/Aerospace specified devices are required,
please contact the Natlonal Semiconductor Sales
Office/Dlstrlbutors for avallability and specifications.
Maximum Allowable Voltage
Voltage at Any Pin
Total Allowable Source Current
Total Allowable Sink Current
Maximum Allowable Power Consumption
Vr

Operating Temperature Range $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise speciiied

Parameter	Conditions	M/n	Max	Units
Operating Voltage		4.5	5.5	\checkmark
Supply Current (Note 1)	$V_{C C}=5.0 \mathrm{~V}, t_{c}=\mathrm{Min}$ (t_{c} is instruction cycle time)		4	mA
Power Supply Ripple (Notes 3, 4)	Peak to Peak		0.25	V
HALT Mode Current (Note 2)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{IN}}=0 \mathrm{kHz}$		120	$\mu \mathrm{A}$
Input Voltage Levels RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{Cc}} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage		-10	+10	$\mu \mathrm{A}$
Input Capacitance (Note 4)			7	pF
Output Voltage Levels LSTTL Operation Logic High Logic Low CMOS Operation Logic High Logic Low	Standard Outputs (except CKO) $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=400 \mu \mathrm{~A} \end{aligned}$ $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 2.7 \\ V_{c c}-0.2 \end{gathered}$	$\begin{aligned} & 0.6 \\ & 0.2 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Allowable Sink/Source Current per Pin (Note 5)			5	mA
CKO Current Levels (As Clock Out) Sink $\div 4$ $\div 8$ Source $\div 16$ $\div 4$ $\div 8$ $\div 16$	$\begin{aligned} & \mathrm{CKI}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CKI}=\mathrm{OV}, \mathrm{~V}_{\text {OUT }}=\mathrm{OV} \end{aligned}$	$\begin{gathered} 0.2 \\ 0.4 \\ 0.8 \\ -0.2 \\ -0.4 \\ -0.8 \end{gathered}$		mA mA mA mA mA mA
Allowable Loading on CKO (as HALT I/O pin)			50	pF
Current Needed to Overrlde HALT (Note 6) To Continue To Halt	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
TRI-STATE or Open Drain Leakage Current		-10	+10	$\mu \mathrm{A}$

Note 1: Supply Current is measured after running for 2000 cycle times with a square-wave clock on CKI, CKO open, and all other pins pulled up to VCC with 5 k resistors. See current drain equation.
Note 2: The HALT mode will stop CKI from oscillating in the RC and crystal configurations. Test conditions: all inputs tied to Vcc. L lines in TRI-STATE mode and tied to ground, all other outputs low and tied to ground.
Note 3: Voltage change must be less than 0.25 V in a 1 ms period.
Note 4: This parameter is only sampled and not 100% tested. Variation due to the device included.
Note 5: SO Output sink current must be limited to keep $V_{O L}$ less than $0.2 \mathrm{~V}_{\mathrm{CC}}$.
Note 6: When forcing HALT, current is only needed for a short time (approximatey 200 ns) to flip the HALT flip-flop.

AC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Max	Units
Instruction Cycle Time (t_{c})		4.4	DC	$\mu \mathrm{s}$
Operating CKI $\div 4$ mode Frequency $\div 8$ mode $\div 16$ mode		$\begin{aligned} & \hline \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.8 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Instruction Cycle Time RC Oscillator (Note 4)	$\begin{aligned} & R=30 k \pm 5 \% \\ & C=82 \mathrm{pF} \pm 5 \% \quad(\div 4 \text { Mode }) \end{aligned}$	6	18	$\mu \mathrm{S}$
Inputs (See Figure 3) IsETUP (Note 4) \qquad	$\left.\begin{array}{l}\text { G Inputs } \\ \text { SIInput } \\ \text { All Others }\end{array}\right\} \quad V_{C C} \geq 4.5 \mathrm{~V}$	$\begin{gathered} \mathrm{tc} / 4+0.8 \\ 0.33 \\ 1.9 \\ 0.40 \\ \hline \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
Output Propagation Delay ${ }_{\text {tPD }}$, t $_{\text {PD }}$	$V_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$		1.4	$\mu \mathrm{s}$

Connection Diagrams

S.O. Wide and DIP			
$14-1$		20	-L5
$V_{C C}-2$		19	L6
$13-3$		18	17
$12-4$		17	RESE
11	COP211C	16	CKI
10.6		15	D0
S1 $=7$		14	01
S0- 8		13	62
SK-19		12	61
GND - 10		11	G0

TL/DD/8444-2
Order Number COP211C-XXX/D,
See NS Hermetic Package Number D20A
Order Number COP211C-XXX/N,
See NS Molded Package Number N20A
Order Number COP211C-XXX/WM
See NS Surface Mount Package Number M20B

Order Number COP210C-XXX/D, See NS Hermetic Package Number D24C

Order Number COP210C-XXX/N, See NS Molded Package Number N24A

Order Number COP210C-XXX/WM
See NS Surface Mount Package Number M24B

Pin Descriptions

Pin	Description	Pin	Description
$L_{7}-L_{0}$	8-bit bidirectional I/O port with TRI-STATE	SK	Logic-controlled clock
$\mathrm{G}_{3}-\mathrm{G}_{0}$	4-bit bidirectional I/O port		(or general purpose output)
	($\mathrm{G}_{2}-\mathrm{G}_{0}$ for 20-pin package)	CKI	System oscillator input
$D_{3}-D_{0}$	4-bit general purpose output port ($\mathrm{D}_{1}-\mathrm{D}_{0}$ for 20-pin package)	CKO	Crystal oscillator output, or HALT mode I/O port (24-pin package only)
SI	Serial input (or counter input)	RESET	System reset input
SO	Serial output (or general purpose output)	V_{Cc}	System power supply

FIGURE 2

Functional Description

A block diagram of the COP210C is given in Figure 1．Data paths are illustrated in simplified form to depict how the vari－ ous logic elements communicate with each other in imple－ menting the instruction set of the device．Positive logic is used．When a bit is set，it is a logic＂ 1 ＂；when a bit is reset，it is a logic＂ 0 ＂．

PROGRAM MEMORY

Program memory consists of a 512－byte ROM．As can be seen by an examination of the COP210C／211C instruction set，these words may be program instructions，program data，or ROM addressing data．Because of the special char－ acteristics associated with the JP，JSRP，JID，and LQID in－ structions，ROM must often be thought of as being orga－ nized into 8 pages of 64 words（bytes）each．

ROM ADDRESSING

ROM addressing is accomplished by a 9 －bit PC register．Its binary value selects one of the 5128 －bit words contained in ROM．A new address is loaded into the PC register during each instruction cycle．Unless the instruction is a transfer of control instruction，the PC register is loaded with the next sequential 9 －bit binary count value．Two levels of subroutine nesting are implemented by two 9 －bit subroutine save regis－ ters，SA and SB．
ROM instruction words are fetched，decoded，and executed by the instruction decode，control and skip logic circuitry．

DATA MEMORY

Data Memory consists of a 128－bit RAM，organized as four data registers of 8×4－bit digits．RAM addressing is imple－ mented by a 6 －bit B register whose upper two bits (Br) se－ lects one of four data registers and lower three bits of the 4－ bit Bd select one of eight 4 －bit digits in the selected data register．While the 4－bit contents of the selected RAM digit (M) are usually loaded into or from，or exchanged with，the A register（accumulator），they may also be loaded into the Q latches or loaded from the L ports．RAM addressing may also be performed directly by the XAD 3， 15 instruction．The Bd register also serves as a source register for 4－bit data sent directly to the D outputs．
The most significant bit of Bd is not used to select a RAM digit．Hence，each physical digit of RAM may be selected by two different values of Bd as shown in Figure 4．The skip condition for XIS and XDS instructions will be true if Bd changes between 0 to 15，but not between 7 and 8 （see Table III）．

INTERNAL LOGIC

The internal logic of the COP210C／211C is designed to en－ sure fully static operation of the device．
The 4－bit A register（accumulator）is the source and destina－ tion register for most I／O，arithmetic，logic and data memory access operations．It can also be used to load the Bd por－ tion of the B register，to load four bits of the 8 －bit Q latch data and to perform data exchanges with the SIO register．
The 4－bit adder performs the arithmetic and logic functions of the COP210C／211C，storing its results in A．It also out－ puts the carry information to a 1 －bit carry register，most of－ ten employed to indicate arithmetic overflow．The C register， in conjunction with the XAS instruction and the EN register， also serves to control the SK output．C can be outputted directly to SK or can enable SK to be a sync clock each instruction cycle time．（See XAS instruction and EN register description below．）

FIGURE 4．RAM Digit Address to

 Physical RAM Digit MappingThe G register contents are outputs to four general purpose bidirectional I／O ports．
The Q register is an internal，latched， 8 －bit register，used to hold data loaded from RAM and A，as well as 8－bit data from ROM．Its contents are output to the LI／O ports when the L drivers are enabled under program control．（See LEI instruc－ tion．）
The eight L drivers，when enabled，output the contents of latched Q data to the L I／O ports．Also，the contents of L may be read directly into A and RAM．
The SIO register functions as a 4－bit serial－in／serial－out shift register or as a binary counter，depending upon the con－ tents of the EN register．（See EN register description below．）Its contents can be exchanged with A ，allowing it to input or output a continuous serial data stream．With SIO functioning as a serial－in／serial－out shift register and SK as a sync clock，the COP210C／211C is MICROWIRE compatible．
The D register provides four general purpose outputs and is used as the destination register for the 4－bit contents of Bd． The XAS instruction copies C into the SKL latch．In the counter mode，SK is the output of SKL；in the shift register mode，SK is a sync clock，inhibited when SKL is a logic＂ 0 ＂．
The EN register is an internal 4－bit register loaded under program control by the LEl instruction．The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register（EN3－ENO）．
1．The least significant bit of the enable register，ENO，se－ lects the SIO register as either a 4－bit shift register or as a 4－bit binary counter．With ENO set，SIO is an asynchro－ nous binary counter，decrementing its value by one upon each low－going pulse（＂ 1 ＂to＂ 0 ＂）occurring on the SI input．Each pulse must be at least two instruction cycles wide．SK outputs the value of SKL．The SO output is equal to the value of EN3．With ENO reset，SIO is a serial shift register，shifting left each instruction cycle time．The data present at SI is shifted into the least significant bit of SIO．SO can be enabled to output the most significant bit of SIO each instruction cycle time．（See 4，below．）The SK output becomes a logic－controlled clock．

TABLE I. Enable Register Modes - Bits ENO and EN3

ENO	EN3	SIO	SI	SO	SK
0	0	Shift Register	Input to Shift	0	If SKL $=1$, SK $=$ clock
0	1	Shift Register	Register Input to Shift	Serial	If SKL $=0$, If SKL $=1, S K=0$
			Register	out	If SKL $=0, S K=0$
1	0	Binary Counter	Input to Counter	0	SK $=$ SKL
1	1	Binary Counter	Input to Counter	1	SK $=$ SKL

2. EN1 is not used, it has no effect on the COP210C/211C.
3. With EN2 set, the L drivers are enabled to output the data in Q to the L I/O ports. Resetting EN2 disables the L drivers, placing the LI/O ports in a high impedance input state.
4. EN3, in conjunction with ENO, affects the SO output. With ENO set (binary counter option selected), SO will output the value loaded into EN3. With ENO reset (serial shift register option selected), setting EN3 enables SO as the output of the SIO shift register, outputting serial shifted data each instruction time. Resetting EN3 with the serial shift register option selected, disables SO as the shift register output; data continues to be snultu inrough SIO and can be exchanged with A via an XAS instruction but SO remains reset to " 0 ".

INITIALIZATION

The internal reset logic will initialize the device upon powerup if the power supply rise time is less than 1 ms and if the operating frequency at CKI is greater than 32 kHz , otherwise the external RC network shown in Figure 5 must be connected to the $\overline{\text { RESET }}$ pin. The RESET pin is configured as a Schmitt trigger input. If not used, it should be connected to $V_{C c}$. Initialization will occur whenever a logic " 0 " is applied to the $\overline{\text { RESET input, providing it stays low for at }}$ least three instruction cycle times.
When V_{CC} power is applied, the internal reset logic will keep the chip in initialization mode for up to 2500 instruction cycles. If the CKI clock is running at a low frequency, this could take a long time, therefore, the internal logic should be disabled by a mask option with initialization controlled solely by RESET pin.
Note: If CKI clock is less than 32 kHz , the internal reset logic (Option $25=1$) must be disabled and the external RC network must be present.
Upon initialization, the PC register is cleared to 0 (ROM address 0) and the A, B, C, D, EN, and G registers are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA (clear A register).

TL/DD/8444-6
RC $>5 \times$ Power Supply Rise Time and RC $>100 \times$ CKI Period
FIGURE 5. Power-Up Clear Circult

COP211C

If the COP210C is bonded as a 20-pin package, it becomes the COP211C, illustrated in Figure 2, COP210C/211C Connection Diagrams. Note that the COP211C does not contain D2, D3, G3, or CKO. Use of this option, of course, precludes use of D2, D3, G3, and CKO options. All other options are available for the COP211C.

HALT MODE

The COP210C/211C is a fully static circuit; therefore, the user may stop the system oscillator at any time to halt the chip. The chip also may be halted by the HALT instruction or by forcing CKO high when it is used as a HALT I/O port. Once in the HALT mode, the internal circuitry does not receive any clock signal, and is therefore frozen in the exact state it was in when halted. All information is retained until continuing. The HALT mode is the minimum power dissipation state.
The HALT mode has slight differences depending upon the type of oscillator used.
a. 1-pin oscillator-RC or external

The HALT mode may be entered into by either program control (HALT instruction) or by forcing CKO to a logic " 1 " state.
The circuit may be awakened by one of two different methods:

1) Continue function. By forcing CKO to a logic " 0 ", the system clock is re-enabled and the circuit continues to operate from the point where it was stopped.
2) Restart. Forcing the RESET pin to a logic " 0 " will restart the chip regardless of HALT or CKO (see initialization).
b. 2-pin oscillator-crystal

The HALT mode may be entered into by program control (HALT instruction) which forces CKO to a logic " 1 " state. The circuit can be awakened only by the RESET function.

Halt I/O Port

CKO PIN OPTIONS

In a crystal-controlled oscillator system, CKO is used as an output to the crystal network. CKO will be forced high during the execution of a HALT instruction, thus inhibiting the crystal network. If a 1-pin oscillator system is chosen (RC or

Functional Description (Continued)

external), CKO will be selected as HALT and is an I/O flipflop which is an indicator of the HALT status. An external signal can override this pin to start and stop the chip. By forcing a high level to CKO, the chip will stop as soon as CKI is high and the CKO output will go high to keep the chip stopped. By forcing a low level to CKO, the chip will continue and CKO output will go low.
All features associated with the CKO I/O pin are available with the 24-pin package only.

OSCILLATOR OPTIONS

There are three options available that define the use of CKI and CKO.
a. Crystal-Controlled Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals th:e crystal frequency divided by 16 (optionally by 8 or 4).
b. External Oscillator. CKI is configured as LSTTL-compatible input accepting an external clock signal. The external frequency is divided by 16 (optionally by 8 or 4) to give the instruction cycle time. CKO is the HALT I/O port.
c. RC-Controlled Oscillator. CKI is configured as a single pin RC-controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is the HALT I/O port.
The RC oscillator is not recommended in systems that require accurate timing or low current. The RC oscillator draws more current than an external oscillator (typically an additional $100 \mu \mathrm{~A}$ at 5 V). However, when the part halts, it stops with CKI high and the halt current is at the minimum.

COP210C/COP211C Instruction Set
Table II is a symbol table providing internal architecture, instruction operand and operational symbols used in the instruction set table.

Table III provides the mnemonic, operand, machine code, data flow, skip conditions and description associated with each instruction in the COP210C/211C instruction set.

FIGURE 6. COP210C Oscillator

Crystal or Resonator					RC-Controller Oscillator		
Crystal		Component Values					Cycle
Value	R1	R2	C1pF	C2pF	R	C	Time
32 kHz	220k	20M	30	5-36	47k	100 pF	17-25 $\mu \mathrm{s}$
455 kHz	5k	10M	80	40	30k	82 pF	6-18 $\mu \mathrm{s}$
3.58 MHz	1k	1 M	30	6-36		$j \leq R \leq 1$	

TABLE II. COP210C/211C Instruction Set Table Symbols

Symbol	Definitlon
INTERNAL ARCHITECTURE SYMBOLS	
A	4-bit Accumulator
B	6-bit RAM Address Register
Br	Upper 2 bits of B (register address)
Bd	Lower 4 bits of B (digit address)
C	1-bit Cary Register
D	4-bit Data Output Port
EN	4-bit Enable Register
G	4-bit Register to latch data for G I/O Port
L	8-bit TRI-STATE I/O Port
M	4-bit contents of RAM Memory pointed to by B
	Register
PC	9-bit ROM Address Register (program counter)
Q	8-bit Register to latch data for L I/O Port
SA	9-bit Subroutine Save Register A
SB	9-bit Subroutine Save Register B
SIO	4-bit Shift Register and Counter
SK	Logic-Controlled Clock Output

Symbol	Definition
INSTRUCTION OPERAND SYMBOLS	
d	4-bit Operand Field, $0-15$ bina
「	2-bit Operand Field, 0-3 binary Select)
a	9-bit Operand Field, 0-511 bin
y	4-bit Operand Field, 0-15 bina
RAM(s)	Contents of RAM location add
ROM(t)	Contents of ROM location add
OPERATIONAL SYMBOLS	
+	Plus
-	Minus
\rightarrow	Replaces
\longleftrightarrow	Is exchanged with
=	Is equal to
\bar{A}	The one's complement of A
\oplus	Exclusive-OR
:	Range of values

Instruction Set（Continued）
TABLE III．COP2 10C／211C Instructlon Set（Continued）

Mnemonic	Operand	Hex Code	Machine Language Code （Binary）		Data Flow	Sklp Conditions

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description	
TEST INSTRUCTIONS							
SKC		20	[0010\|0000]		$C=" 1 "$	Skip if C is True	
SKE		21	0010/0001		$A=R A M(B)$	Skip if A Equals RAM	
SKGZ		$\begin{aligned} & 33 \\ & 21 \end{aligned}$	$0011\|0011\|$ $0010\|0001\|$		$\mathrm{G}_{3: 0}=0$	Skip if G is Zero (all 4 blts)	
SKGBZ	0	33 01	0011 $0000\|0011\|$ 0001	1st byte	$\mathrm{G}_{0}=0$	Skip if G Bit is Zero	
	1	11	000010001	2nd byte	$\mathrm{G}_{1}=0$		
	2	03	000010011	2nd byte	$\mathrm{G}_{2}=0$		
	3	13	001010011		$\mathrm{G}_{3}=0$		
SKMBZ	0	01	0000\|0001]		$\mathrm{RAM}(\mathrm{B})_{0}=0$	Skip if RAM Bit is Zero	
		11	0001 0001		$\operatorname{RAM}(\mathrm{B})_{1}=0$		
	2	03	000010011		$\mathrm{RAM}(\mathrm{B})_{2}=0$		
	3	13	000110011		RAM $(B)_{3}=0$		
INPUT/OUTPUT INSTRUCTIONS							
ING		33	0011 $00011 \mid$	$G \rightarrow A$	None	Input G Ports to A	
		2A	0010\|1010				
INL		33	001110011	$L_{7: 4} \rightarrow$ RAM (B)	None	Input L Ports to RAM, A	
		2 E	0010/1110	$L_{3: 0} \rightarrow A$			
OBD		33	0011\|0011		$\mathrm{Bd} \rightarrow \mathrm{D}$	None	Output Bd to D Outputs
		3E	0011 1110				
OMG		33	0011\|0011	RAM(B) \rightarrow G	None	Output RAM to G Ports	
		3A	0011 1010				
XAS		4F	$10100 \mid 1111$	A	None	Exchange A with SIO	

Note 1: The JP instruction allows a jump, while in subroutine pages 2 or 3 , to any ROM location within the two-page boundary of pages 2 or 3 . The JP instruction, otherwise, permits a jump to a ROM location within the current 64 -word page. JP may not jump to the last word of a page.
Note 2: A JSRP transters program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3 . JSRP may not jump to the last word in page 2.

Description of Selected

Instructions

The following information is provided to assist the user in understanding the operation of several unique instructions and to provide notes useful to programmers in writing COP210C/211C programs.

XAS INSTRUCTION

XAS (Exchange A with SIO) exchanges the 4-bit contents of the accumulator with the 4-bit contents of the SIO register. The contents of SIO will contain serial-in/serial-out shift register or binary counter data, depending on the value of the EN register. An XAS instruction will also affect the SK output. (See Functional Description, EN Register). If SIO is selected as a shift register, an XAS instruction must be performed once every four instruction cycle times to effect a continuous data stream.

JID INSTRUCTION

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower eight bits of the

ROM address register PC with the contents of ROM addressed by the 9 -bit word, $\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M} . \mathrm{PC}_{8}$ is not affected by this instruction.
Note: JID uses two instruction cycles if executed, one if skipped.

LQID INSTRUCTION

LQID (Load Q Indirect) loads the 8-bit Q register with the contents of ROM pointed to by the 9 -bit word $\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M}$. LQID can be used for table look-up or code conversion such as BCD to 7 -segment. The LQID instruction "pushes" the stack (PC +1 \rightarrow SA $\rightarrow S B$) and replaces the least significant eight bits of the PC as follows: $A \rightarrow$ PC7:4, RAM $(B) \rightarrow \mathrm{PC}_{3: 0}$, leaving PC_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" (SB \rightarrow SA \rightarrow PC), restoring the saved value of the PC to continue sequential program execution. Since LQID pushes SA \rightarrow SB, the previous contents of SB are lost.
Note: LQID uses two instruction cycles if executed, one if skipped.

Description of Selected

 Instructions（Continued）

 Instructions（Continued）}
INSTRUCTION SET NOTES

a．The first word of a COP210C／211C program（ROM ad－ dress 0 ）must be a CLRA（Clear A）instruction．
b．Although skipped instructions are not executed，one in－ struction cycle time is devoted to skipping each byte of the skipped instruction．Thus all program paths take the same number of cycle times whether instructions are skipped or executed（except JID and LQID）．
c．The ROM is organized into eight pages of 64 words each． The program counter is a 9 －bit binary counter，and will count through page boundaries．If a JP，JSRP，JID，or LQID instruction is located in the last word of a page，the instruction operates as if it were in the next page．For example：A JP located in the last word of a page will jump to a location in the next page．Also，a LQID or JID located in the last word in page 3 or 7 will access data in the next group of four pages．

POWER DISSIPATION

The lowest power drain is when the clock is stopped．As the frequency increases so does current．Current is also low－ er at lower operating voltages．Therefore，to minimize pow－ er consumption，the user should run at the lowest speed and voltage that his application will allow．The user should take care that all pins swing to full supply levels to ensure that outputs are not loaded down and that inputs are not at some intermediate level which may draw current．Any input with a slow rise or fall time will draw additional current．A crystal－or resonator－generated clock will draw additional current．An RC oscillator will draw even more current since the input is a slow rising signal．

If using an external squarewave oscillator，the following equation can be used to calculate the COP210C current drain．

$$
\mathrm{Ic}=\mathrm{Iq}+(\mathrm{V} \times 35 \times \mathrm{Fi})+(\mathrm{V} \times 2195 \times \mathrm{Fi} / \mathrm{Dv})
$$

where ic = chip current drain in microamps
lq＝quiescent leakage current（from curve）
$\mathrm{Fi}=\mathrm{CKI}$ frequency in megahertz
$V=$ chip $V_{C C}$ in volts
Dv＝divide by option selected
For example，at $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and 400 kHz （divide by 4），

$$
\begin{aligned}
& \text { lc }=10+(5 \times 35 \times 0.4)+(5 \times 2195 \times 0.4 / 4) \\
& \text { lc }=10+50+1097.5=1157.5 \mu \mathrm{~A}
\end{aligned}
$$

I／O OPTIONS

COP210C／211C outputs have the following optional config－ urations，illustrated in Figure 7：
a．Standard．A CMOS push－pull buffer with an N －channel device to ground in conjunction with a P－channel device to V_{CC} ，compatible with CMOS and LSTTL．
b．Open Drain．An N －channel device to ground only，allow－ ing external pull－up as required by the user＇s application．
c．Standard TRI－STATE L Output．A CMOS output buffer similar to（a）which may be disabled by program control．
d．Open－Drain TRI－STATE L Output．This has the N－channel device to ground only．
The SI and RESET inputs are $\mathrm{Hi}-\mathrm{Z}$ inputs（Figure 7e）．
When using either the G or L I／O ports as inputs，an exter－ nal pull－up device is necessary．

a．Standard Push－Pull Output

b．Open Drain Output

c．Standard TRI－STATE ＂L＂Output

d．Open Drain TRI－STATE ＂L＂Output

e．HI－Z Input

TL／DD／8444－8

FIGURE 7．I／O Configuratlons

All output drivers uses one or two common devices num－ bered 1 to 2 ．Minimum and maximum current（lout and $V_{\text {OUT }}$ ）curves are given in Figure 8 for each of these devices
to allow the designer to effectively use these I／O configura－ tions．

TL/DD/8444-10

FIGURE 8

Option List

The COP210C/211C mask-programmable options are assigned numbers which correspond with the COP210C pins. The following is a list of COP210C options. When specifying a COP211 chip, options 20, 21, and 22 must be set to 0 . The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various I/O components using little or no external circuitry.
Option 1: $\quad 0=$ Ground Pin. No options available.
Option 2: CKO I/O Port Determined by Option 3. = 0 no option (a. is crystal oscillator output for two pin oscillator b. is HALT I/O for one pin oscillator)
Option 3: CKI Input.
$=0$: Crystal-controlled oscillator input ($\div 4$).
$=1$: Single-pin RC-controlled oscillator ($\div 4$).
$=2$: External oscillator input ($\div 4$).
$=3:$ Crystal oscillator input $(\div 8)$.
$=4$: External oscillator input ($\div 8$).
$=5$: Crystal oscillator input $(\div 16)$.
$=6$: External oscillator input $(\div 16)$.
Option 4: $\overline{\text { RESET }}$ Input $=1: \mathrm{Hi}-\mathrm{Z}$ input. No option available.
Option 5: L7 Driver
$=0$: Standard TRI-STATE push-pull output.
= 2: Open-drain TRI-STATE output.
Option 6: L_{6} Driver. (Same as Option 5.)
Option 7: L5 Driver. (Same as Option 5.)
Option 8: $\quad L_{4}$ Driver. (Same as Option 5.)
Option 9: $V_{\text {cc }}$ Pin $=0$ no option.

Option 10: L_{3} Driver. (Same as Option 5.)
Option 11: L_{2} Driver. (Same as Option 5.)
Option 12: L_{1} Driver. (Same as Option 5.)
Option 13: Lo Driver. (Same as Option 5.)
Option 14: SI Input.
No option available.
$=1$: Hi-Z input.
Option 15: SO Output.
$=0$: Standard push-pull output.
= 2: Open-drain output.
Option 16: SK Driver. (Same as Option 15.)
Option 17: G_{0} I/O Port. (Same as Option 15.)
Option 18: G_{1} I/O Port. (Same as Option 15.)
Option 19: G_{2} I/O Port. (Same as Option 15.)
Option 20: G_{3} I/O Port. (Same as Option 15.)
Option 21: D_{3} Output. (Same as Option 15.)
Option 22: D_{2} Output. (Same as Option 15.)
Option 23: D_{1} Output. (Same as Option 15.)
Option 24: D_{0} Output. (Same as Option 15.)
Option 25: Internal Initialization Logic.
$=0$: Normal operation.
$=1$: No internal initialization logic.
Option 26: No option available.
Option 27: COP Bonding
$=0:$ COP210C (24-pin device).
$=1:$ COP211C (20-pin device). See Note.
$=2:$ COP210C and COP211C. See Note.

Note: If option $27=1$ or 2 then option 20 must $=0$.

Option Table

Please fill out a photocopy of the Option Table and send along with your EPROM.

Option Table

Option	1 Value =	0	is: Ground Pin
Option	2 Value $=$	0	is: CKO Pin
Option	3 Value		is: CKI Input
Option	4 Value $=$	1	is: $\overline{\text { RESET Input }}$
Option	5 Value $=$		is: L_{7} Driver
Option	6 Value $=$		is: L_{6} Driver
Option	7 Value $=$		is: L_{5} Driver
Option	8 Value =		is: L_{4} Driver
Option	9 Value	0	is: V_{CC} Pin
Option	10 Value =		is: L_{3} Driver
Option	11 Value =		is: L_{2} Driver
Option	12 Value =		is: L_{1} Driver
Option	13 Value =		is: Lo Driver
Option	14 Value =	1	is: SI Input

